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Introduction
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2 Introduction

1.1 Motivation

Globalization has led to a drastic increase in the demand for transportation services
of goods and people over the last decades. For instance, international seaborne
trade carried by container ships has increased from 102m tons in 1980 to 1,834m
tons in 20171 and the number of airline passengers worldwide has increased from
1,994m in 2004 to 4,543m people in 20192. The consequences are not only higher
overall transport volumes and more services, but also more destinations that need
to be connected and transportation networks becoming denser and more extensive.
The network of intermodal services for hinterland container transport in Europe has
expanded from connecting 24 countries and 324 cities in 2016 to 25 countries and 452
cities in 2021, and the global nonstop and one-stop connectivity index for passenger
flights grew by 86.3% and 175.8%, respectively, between 1990 and 2012 (Allroggen et
al., 2015). Despite a temporary setback due to the Covid-19 pandemic, the demand
for transportation is expected to continue in the upcoming decades, which means
that the supply needs to grow accordingly.

This can be achieved by investments in transportation infrastructure such as canals,
railways, highways, or airports, to provide access to more destinations and allow for
higher throughput. Moreover, individual carriers can expand their service network
and increase the capacities on existing services to skim the growing market. How-
ever, while these solutions are to some extent inevitable, they are expensive, complex,
inefficient, and often impractical. Infrastructure in most transportation systems is
constrained by geographical and geopolitical aspects and expansion of carrier net-
works to reach new destinations needs to be in line with their existing service portfolio
and overall strategy.

Vertical collaboration is a way to overcome these issues. It involves the sequential
execution of transportation services from origin to destination. A sequence of services
can involve different carriers and different transport modes providing an integrated
service. Through vertical collaboration, the service networks of transport modes
and carriers are integrated, leading to larger coverage of destinations and shorter
routes. For instance, airlines can expand their destination network through offering
connecting flights operated by partner airlines (Cardillo et al., 2013b), and rail and
barge services in intermodal hinterland container transport complement each other

1Source: https://www.statista.com/statistics/253987/international-seaborne-trade-carried-by-
containers/ (Date accessed: February 21, 2022)

2Source: https://www.statista.com/statistics/564717/airline-industry-passenger-traffic-globally/
(Date accessed: February 21, 2022)
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to overcome geographical obstacles and provide a competitive alternative to trucking
(de Langen et al., 2017). Thereby, the transportation system can reach a higher level
in terms of transport times, flexibility, resilience, and environmental footprint due to
a more efficient use of existing resources and better responsiveness under disruption
to the service network (Cardillo et al., 2013b).

However, successful collaboration is subject to a number of conditions, among which
are competitive and commercial alignment (Agarwal and Ergun, 2010; Houghtalen
et al., 2011; Özener et al., 2011), organizational readiness (Cruijssen et al., 2007b;
Sanchez Rodrigues et al., 2015), and sufficient technical infrastructure (Buijs and
Wortmann, 2014). If these conditions are not met, collaborations might not yield
the expected benefits and can even be prone to failure. In particular, impacts such
as legislative or policy changes, conflicts, technical failure, or cyber attacks (Kumar
and van Dissel, 1996; Tonn et al., 2019) can lead to the collapse of collaborative
systems with adverse impact on the transportation performance. As a result, there
is a type of vulnerability created through collaboration, which comes in addition to
the physical threats to transportation systems such as low water levels for barges or
rail breakdown. A transportation system that makes extensive use of collaboration is
heavily reliant on these collaborations being intact (Cardillo et al., 2013b). This vul-
nerability can have a severe impact, as painfully highlighted in the 2017 (Not)Petya
hack, a malware attack in the Ukraine that infected a large number of companies
and institutions across the world including several transportation companies such as
Maersk/APM Terminals (USD 300m damage) and TNT Express (USD 400m dam-
age), disrupting their operations or even bringing them to a halt (Greenberg, 2018).
Throughout this dissertation, the term vulnerability is used to describe the potential
impact magnitude of disruption combined with disruption probability (how likely)
and susceptibility (how easy to exploit). The term risk is used to describe the prob-
ability of a disruption taking place and the term threat is used to describe origins or
sources of disruption.

While the benefits of collaboration in transportation systems are extensively covered
in the literature, for instance with respect to cost synergies (Adenso-Díaz et al., 2014;
Cruijssen et al., 2007a), or carbon footprint reduction (Demir et al., 2016; Lin and Ng,
2012), knowledge on the concomitant vulnerability is rather limited. Existing studies
focus on the conditions for successful collaboration and potential causes for failure,
e.g. with respect to the alignment of side payments in liner shipping (Agarwal and
Ergun, 2010) or truck transportation (Özener et al., 2011), incentivisation schemes
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(Houghtalen et al., 2011), organizational readiness (Verstrepen et al., 2009; Zacharia
et al., 2011), or the creation of trust (Pomponi et al., 2015), but an integrated
perspective on opportunities and threats of collaboration in large scale transportation
systems is missing.

In a world of transportation that is becoming evermore reliant on collaboration and
consequently more interconnected through information technology, this is a severe
knowledge gap. New visions of transportation such as synchromodal transport (van
Riessen et al., 2015a) or the Physical Internet (Montreuil, 2011) are heavily de-
pendent on close collaboration between carriers in order to be realized. Moreover,
these visions require strong technological integration, including the sharing of large
amounts of data and the usage of sophisticated technologies such as sensor technol-
ogy or smart contracts. It is crucial to understand the vulnerabilities that come with
these developments.

Traditional approaches in transportation research often fall short in addressing the
complex multi-layered nature of modern transportation systems. Besides presenting
an efficient and sustainable solution to cope with increasing demand for transporta-
tion, vertical collaboration creates a new level of complexity emerging from the net-
work integration, the transshipments between transport modes and carriers along a
path with sequential services, as well as the collaboration and information exchange
between autonomous carriers required to provide such services. This complexity
is difficult to capture with conventional notions and models used in transportation
research. Operational, technical, commercial, and organizational aspects of collab-
orative transport systems are well researched at the individual and local level (Pan
et al., 2019), e.g. the alignment of side payments (Agarwal and Ergun, 2010), part-
ner selection (Verstrepen et al., 2009), intermodal terminal operations (Arango et
al., 2011), or the role of IT in joint decision making (Buijs and Wortmann, 2014).
At system level, however, individual and local decisions lead to the emergence of a
complex adaptive system with non-trivial features. These features are difficult to
trace back to the individual level, which leads to low predictability of the impact of
changes to the system (Choi et al., 2001).

Understanding the complexity at system-level is fundamental to provide a compre-
hensive analysis of the impact of vertical collaboration on the vulnerability of a
transportation system, which is the core objective of this dissertation. Establishing
such an understanding can be achieved through observing changes in individual char-
acteristics emerging from integration, but also through abstraction from individual
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instances and focus on structural patterns. This enables a dedicated analysis of the
vulnerability induced by collaboration and put it into relation with the benefits.

The remainder of this chapter begins with the provision of background knowledge
on some of the most relevant theories, concepts, and methods that are relevant in
the context of this dissertation (Section 1.2), namely intermodal transport (Section
1.2.1), collaboration in transportation (Section 1.2.2), and the science of complex
networks (Section 1.2.3). In Section 1.3, the research objective and approach are
presented. The introduction concludes with an outline of the dissertation including
a brief summary of each content chapter in Section 1.4.

1.2 Background knowledge

1.2.1 Multimodal hinterland transport

Despite covering general transportation systems with decentrally operated services,
the main reference system of this dissertation is multimodal container transport in
the seaport hinterland. Multimodal transport describes the flexible use of alterna-
tive transport modes rail and barge, including multi-leg transport chains involving
multiple transport modes and carriers. Enabling such transport chains requires ver-
tical collaboration between carriers. The aim of multimodal transport is to provide
a more flexible, resilient, and sustainable transport transport systems with little
need for truck transport. In Europe, hinterland transport is carried out through
a network consisting of a large number of transport services provided by different
independent operators and via different transport modes on road, rail, and inland
waterways (de Langen et al., 2017). Barge transport, which is inland shipping on
rivers and canals, is the cheapest option. However, it is also the slowest option and
is naturally limited to existing transport connections. Rail transport is significantly
faster, but also limited to the existing rail network and availability of services. In
contrast, trucking offers maximum flexibility and short transport times, but comes
with the highest costs. The trade-off between these different transport modes has
already been addressed in various publications (Bloemhof et al., 2011; Crainic and
Bektas, 2007; van Riessen et al., 2015b).

Under the premises of this multimodality trade-off and the limitations of infrastruc-
ture, hinterland transport went through a process to adapt to increasing transport
demand. For a long time, unimodal transport from the sea port to the final destina-
tion with a single transport mode, usually truck, was predominant (de Langen and
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Sharypova, 2013). However, congestion of roads through trucks, increased cost pres-
sure for transportation of goods, and environmental considerations have increased
awareness and usage of alternative hinterland transport modes such as barge and
rail. In addition to that, advances in technology enabled the provision of trans-
port services in sequence with multiple modes and carriers. The fact that shippers
not only started using alternative transport modes, but also multiple modes within
one transport sequence, gave way to the emergence of a complex network of multi-
modal transport services. This network exhibits a highly complex structure as it is
the product of multiple individual, but interlinked networks formed by the different
transport modes. While the backbone of this network was to some extent predeter-
mined by the availability of inland waterways and rail infrastructure, evolution of
the network of services was shaped by several influencing factors. Besides the per-
formance attributes speed, price, and reliability of the respective modes, evolution of
the network is additionally driven by geographical, geopolitical, and infrastructural
factors (Notteboom, 2010).

Throughout the last decade a substantial set of literature has grown on multimodal
hinterland transport and the associated concepts of inter- and synchromodal trans-
port. Agamez-Arias and Moyano-Fuentes (2017) provide a comprehensive review on
multimodal transport. On the one hand, much of the existing body of knowledge
focuses on optimization models for planning on operational, tactical, and strategic
level as reviewed in SteadieSeifi et al. (2014). Among those are models for rout-
ing, scheduling, or global optimization of container flow. Most of these models have
been employed with a limited scale in order to enable optimization. While this ap-
proach contributes strongly to the theoretical understanding of the subject, it cannot
say much about the structural evolution of the network. On the other hand, many
researchers investigated intermodal transport from an economical, political, or com-
petitive perspective. Janic (2007), Vannieuwenhuyse et al. (2003), and Islam et al.
(2013) provide approaches to estimate costs of intermodal transport connections and
to compare them. Van Der Horst and De Langen (2008) find that coordination is a
major enabler for the performance of hinterland supply chains, but its development
is hindered by free-riding problems, a lack of contractual relationships, information
asymmetry, and a lack of incentives. Ducruet and van der Horst (2009) measure the
role of intermediaries in this context.

A number of studies on structure and complexity of intermodal transport from a
system perspective contribute to the explanation of emerging system features and
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how the evolution of the network reflects in its structure. Veldman and Bückmann
(2003) identify a change in port competition stemming from more opportunities for
port selection due to the hinterland network becoming more connected. Wang and
Cullinane (2016) provide benchmarks for the competitive positions of seaports based
on their centrality score in the worldwide maritime sea-shipping network. In a lon-
gitudinal study performed on the European container network, Notteboom (1997)
concluded the containerisation of transport is not leading to further concentration of
ports. Instead, he expected traffic flows to decentralise under the influence of com-
petition between large consortia, the development of hinterland links, and policies
from (port) authorities and governments. In his follow-up research in 2010 it became
evident this was indeed happening (Notteboom, 2010). Structural aspects can also
be found in the design of hinterland corridors, e.g. for the outgoing barge networks
in Rotterdam (Konings et al., 2013) or Antwerp (Caris et al., 2012). Ducruet et
al. (2010), Ducruet and Zaidi (2012), and Wang and Cullinane (2016) provide evi-
dence of the effectiveness of structural network analysis for an understanding of the
functionality of global container transportation system and the role of ports as an
interface between foreland/maritime and hinterland networks.

1.2.2 Collaboration in transportation

Collaboration in transportation or collaborative transport describes transport sys-
tems, in which carriers or transport modes can leverage their individual transport
offering through collaborative provision of services, with the aim to improve the
overall service level (destinations, flexibility, transport time) or reduce costs.

Types of collaboration

Collaborative provision of services between carriers can take on various forms, among
which are horizontal and vertical collaboration. Horizontal collaboration involves car-
riers that provide similar services, possibly in competition, for which resources can be
shared to enhance capacity or frequency of service. In intermodal transport, horizon-
tal collaboration for instance can include flexible allocation of containers to parallel
services operated by different carriers and possibly on different transport modes in
order to cope with demand variation or disruption. Vertical collaboration involves
carriers providing transportation services that can be executed in sequence to provide
a combined transportation service along a path. In between those connecting services,
transshipment is required. Vertical collaboration in intermodal transport comprises
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the provision of transport chains involving transshipment between services operated
on different transport modes or by different carriers. Coordination of transshipment
at terminals and enabling integrated booking are key aspects of vertical collaboration
in hinterland transport. Despite touching upon certain aspects of horizontal collabo-
ration such as the similarity of services, the focus of this dissertation lies on vertical
collaboration with consecutive services and transshipments.

We distinguish vertical collaboration by the type of transshipment, which can be
between different transport modes (multi-mode vertical collaboration) and differ-
ent carriers (multi-carrier vertical collaboration). Transshipment between different
transport modes happens for instance in public transportation, where passengers
can change between bus, train, metro, and even plane in consecutive fashion at given
transshipment points in the network. Multi-mode vertical collaboration often aims
at providing a cheaper and more sustainable alternative to an established transport
mode like the car for passengers or trucks for cargo, which cause and suffer from con-
gestion on highways. Since travelling by car and transportation by truck is highly
convenient with respect to speed, flexibility, and coverage of destinations, multi-mode
vertical collaboration needs to provide a cheaper and more sustainable alternative
while offering a comparable service level in order to present a competitive alternative.
This can be achieved through vertical collaboration. By connecting the networks of
different transport modes through the possibility of transshipment, the weaknesses
of the respective transport modes can be overcome and their individual strengths can
be exploited. In the case of intermodal transport, barges can be used to provide high-
frequency and high-capacity services between large hubs in high-demand areas in the
hinterland with decent canal infrastructure, from where rail services can be used to
serve more remote hinterland destinations. Challenges of vertical collaboration of
transport modes centre around the process of transshipment w.r. to infrastructure,
revenue management, and operational planning (Agamez-Arias and Moyano-Fuentes,
2017; Caris et al., 2014; van Riessen et al., 2017).

Multi-carrier vertical collaboration, e.g. as part of intermodal transport, mainly aims
at providing a more efficient utilization of existing transportation resources, wider
network coverage of carriers, as well as shorter and more flexible routes (Cardillo
et al., 2013b). The challenges are similar to those of multi-mode collaboration, but
additional complexity is added by the fact that vertically collaborating carriers are to
some extent collaborators and competitors at the same time. Commercial alignment
between carriers, e.g. through side payments (Agarwal and Ergun, 2010; Özener et
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al., 2011) or incentivation schemes (Houghtalen et al., 2011) is therefore paramount
to guarantee stable coalitions. Moreover, the market structure of carriers within the
system needs to be taken into account as heterogeneity in cost structure (Defryn et
al., 2016; Padilla Tinoco et al., 2017) and bargaining power (Guajardo et al., 2016)
can be barriers for feasible benefit sharing.

The methodology of this dissertation largely abstracts away from the specific type of
collaboration to ensure general applicability of findings. Nevertheless, references and
examples from the specific context are provided throughout to make the approach
and findings tangible

Physical and collaborative level of transportation systems

There is a distinction in collaborative transport systems between the physical and
the collaborative level. The physical level describes the actual physical movement
of goods or people. It includes the physical transportation services performed by
different carriers and different transport modes, as well as transshipment services
performed by terminal operators. The collaborative level addresses activities beyond
the physical movement of goods, which include non-physical coordination efforts and
information exchanges between involved parties required to enable collaboration. Co-
ordination efforts include, for instance, sharing of booking and planning information,
redistribution of costs and benefits, tracking of deliveries, and error handling. In in-
termodal transport, coordination is necessary between a number of parties, especially
truck, train, and barge carriers, as well as terminal operators. Basic collaboration
could entail sharing of data on schedules and availability capacity on manual request
as well as manual coordination of bookings and compensations between carriers.
More advanced collaborations come with an interface enabling integrated booking of
transportation services involving both carriers at either carrier’s platform or even a
shared interorganizational information system (van Baalen et al., 2008). These sys-
tems can include automated compensation schemes for service sharing and automated
coordination of transshipment with terminal operators.

System impact of vertical collaboration: Emerging characteristics, syner-
gies and vulnerability

Emergent patterns in complex supply networks are difficult to grasp as complex-
ity does not allow for creating a direct relationship between changes and outcome
(Cardillo et al., 2013a; Choi et al., 2001). While physical and collaborative level
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are complex by themselves, it is the interdependence between them that makes the
transportation system truly complex. Changes on either level can have an impact on
the other level and the system as a whole.

Vertical collaboration can be interpreted as the merging of otherwise isolated trans-
portation networks. Progressive merging of such networks leads to the emergence of
structural features that are not present in the single layers and have an impact on
the statics of the system (Battiston et al., 2017). For instance, the merging of service
networks of national flagship airlines in the European Air Transport network leads
to the emergence of a rich-club, a connected subnetwork of highly connected nodes
representing the largest European airports (Cardillo et al., 2013a). Emerging net-
work features also affect the positioning of nodes (hubs/terminals in a transportation
context) within a network. It is not sufficient to classify them by their connectivity,
but also by their connecting role between services of different carriers or transport
modes. A node that is central within the network of one mode or carrier can be
rather remote in the collaborative network if it has no transshipment connections.
In intermodal transport, terminals that have both rail and barge connections benefit
disproportionately from vertical collaboration.

The aim of vertical collaboration is to create synergies and improve the overall per-
formance of the system. However, contrary to the widely adopted assumption in
transportation research and practice, the complex outcome of vertical collaboration
is not always only for the better, but can also have adverse impacts. Besides the
creation of synergies, a new type of vulnerability at the collaborative level emerges.
The potential synergies of vertical collaboration are relatively intuitive. Synergies
through collaboration are created by exploiting unused potential of existing trans-
port service infrastructure. The potential is unused due to constraints in service
usage and transshipment, i.e. available multi-leg routes can only be used if involved
carriers collaborate to facilitate booking and transshipment. For instance, two adja-
cent rail services cannot be used in sequence if the operating carriers do not provide
integrated booking. Services have to be booked separately, which is inconvenient
since transshipment might not be arranged and there is no compensation guarantee
for missed connections. As a result, customers might opt for a direct truck service
instead, which is more expensive, less sustainable, and would not be necessary if carri-
ers were collaborating. Establishing collaborations reduces these constraints, leading
to an increased number of alternative routes, higher network coverage, and shorter
transport times. Synergies in collaborative planning can be exploited by maximizing



1.2. Background knowledge 11

fill rates (Cruijssen et al., 2007a), reducing empty runs (Adenso-Díaz et al., 2014;
Ergun et al., 2007; Lin and Ng, 2012), finding optimal locations to foster partici-
pation of carriers Hernández et al. (2011), and optimizing supply network pooling
Pan et al. (2013). Improvements are substantial, for instance w.r. to cost synergies
(Adenso-Díaz et al., 2014; Cruijssen et al., 2007a), or carbon footprint reduction (Lin
and Ng, 2012).

Vulnerability through vertical collaboration is less intuitive. Collaboration does not
only create synergies, it also creates a new disruption threat at the collaborative level,
which comes on top of the existing physical disruption threats (disruption of physi-
cal services, e.g. through low water levels). For instance, collaborating carriers have
to rely on each other that information is provided on services, bookings, capacities,
transshipments, and that this information is correct. In intermodal transport, coor-
dination is required to deploy intermodal transport chains involving multiple carriers.
If carriers fail to provide their partners and involved terminals with the required data
or the data is falsified, e.g. resulting from a ransomware attack, transport chains be-
come infeasible. Disruption at the collaborative level can also be caused by strategic
misalignment in collaborations, e.g. from a commercial (Agarwal and Ergun, 2010;
Houghtalen et al., 2011; Özener et al., 2011), competitive, legislative, or trust per-
spective (Pomponi et al., 2015). External influences such as new regulations or new
physical infrastructure can cause an imbalance of benefits of collaboration between
partners, or even to collaborations becoming obsolete for one of the two or both
parties. The consequence of disruption at the collaborative level can be the failure of
collaboration, and consequently a loss of system performance. Vulnerability at the
collaborative level is defined by the potential magnitude of the impact of disruption
and how susceptible the system is to this impact.

1.2.3 The science of Complex Networks

Complex networks methods and applications

The study of complex networks has first received attention through Milgram (1967),
who discovered in an experiment that people were acquainted to each other by an
arbitrary path length of six. The results of the experiment became popular as small-
world phenomenon or six degrees of separation. Watts and Strogatz (1998) general-
ized the findings of Milgram (1967) by introducing a network model to analyze the
phenomenon and to generate random graphs with small-world property. Barabasi
and Albert (1999) introduced the class of scale-free networks, networks whose node
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degree distribution (number of adjacent edges) follows a power law, i.e. there is a
small number of nodes with very high degree whereas most nodes are sparsely con-
nected. They discovered that scale-free networks are very resilient to random failure,
but very vulnerable to targeted attack against high degree nodes. Since then, net-
work science established itself as a useful approach to study natural and engineered
systems with high inherent complexity. The representation of such systems as net-
works allows for the use of relatively simple metrics to extract information about the
nature of the system out of its network structure.

Network science does not only make highly complex networks more tractable, it
often fulfills a different purpose than most conventional methods as well. While
the focus of for instance operations research is predominantly on the optimization
of system parameters to maximize performance, network science aims to carve out
general system characteristics and the driving structural forces behind them. For
instance, one would not necessarily try to find the optimal set of links to maximize
the resilience of a given transporation network instance, but rather search for network
characteristics that support resilience and apply to a wider range of networks.

Such analysis has been conducted in empirical studies using extensive data of a
wide range of real-world systems including social, biological, or physical systems
(Boccaletti et al., 2006; Newman, 2010). Studies on social networks addressed for
instance personal acquaintances (Milgram, 1967; Watts and Strogatz, 1998) or opin-
ion dynamics (Shao et al., 2009; Solomon et al., 2000). Socio-economic systems
analyzed from a complex network perspective include the internet (Barabasi and
Albert, 1999; Siganos et al., 2003), academic citations (Radicchi et al., 2008), or
financial networks (Bonanno et al., 2004; Sarantitis et al., 2018). Moreover, analyses
of cellular and metabolic networks (Jeong et al., 2000), epidemic spreading (Pastor-
Satorras and Vespignani, 2001), immunization strategies (Cohen et al., 2003), and
food webs (Williams and Martinez, 2000) were conducted. Among the physical net-
works studied in a complex networks context are power grids (Strogatz, 2001) and
telecommunication networks (Onnela et al., 2007).

The empirical analysis of real-world networks is sometimes not sufficient to derive
specific insights on the system impact of certain network characteristics, since these
characteristics need to be varied to derive their impact. A suitable alternative is
provided by random network models mimicking the structure of real-world networks.
Random network models can be used to conduct the desired analysis, either with



1.2. Background knowledge 13

an analytical approach or by generating and analysing large populations of networks
with tunable network characteristics.

In the field of transportation research, the ample opportunities of network science
have not gone unnoticed. The most prominent applications of complex networks anal-
ysis for transportation networks are airline networks (Cardillo et al., 2013a; Cardillo
et al., 2013b; Du et al., 2016; Guimera et al., 2005; Verma et al., 2014), public trans-
port networks (Ferber et al., 2009; Latora and Marchiori, 2002; Sen et al., 2003),
or maritime shipping networks (Ducruet and Notteboom, 2012; Hang et al., 2015;
Kaluza et al., 2010; Pais Montes et al., 2012; Wang and Cullinane, 2014).

Multi-layer networks

Most complex systems comprise multiple types of interactions, potentially at differ-
ent physical or logical levels, or change depending on time. As a consequence, an
adequate network representation cannot be achieved in a single network, but the
multi-layer nature of these systems needs to be accounted for. Research on multi-
layer networks, which is a generalization of conventional network theory, provides a
framework and tools to study such systems (Kivela et al., 2014). Multi-layer analysis
is nowadays one of the most relevant research streams within the field of network
science. Multi-layer systems are dissected into subnetworks, which represent for in-
stance different types of acquaintances (friend, colleague, relative) in a social network
or different transport modes (train, car, plane) or carriers in a transportation net-
work (Cardillo et al., 2013a; Cardillo et al., 2013b). These two examples fall into the
category of multiplex networks, which are a special case of multi-layer networks. Mul-
tiplex networks are node-aligned, i.e. each network layer has the same set of nodes
and layers only differ in the set of edges (Kivela et al., 2014). General multi-layer
networks have a wider definition. Nodes and edges can represent something different
in each layer, which allows for representing more complex functionally interdependent
network layers.

Multi-layer network modelling is particularly popular for research on cyber-physical
systems such as power-communication coupled systems with a power infrastructure
layer and a communication layer. The two layers are coupled to enable smart grid
functionality, but they are also closely coupled and therefore highly interdependent.
Buldyrev et al. (2010) show that such networks are prone to cascading failure, where
failure in one network layer propagates back and forth between layers and can lead to
complete disintegration of the network. Moreover, (Parshani et al., 2010) found that
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reducing the coupling strength can mitigate the risk of cascading failure in general
interdependent networks. In many real-world interdependent systems, layer integra-
tion exhibits a trade-off between network functionality and vulnerability. Schneider
et al. (2013) developed strategies to select autonomous (immune to failure) nodes to
improve resilience of communication-power coupled systems. In a similar context,
Korkali et al. (2017) found that the inter-layer coupling mechanism is decisive if an
increasing level of layer interdependence increases or reduces the risk of cascading
failure.

The versatility of multi-layer modelling and the fact that analyses of related cyber-
physical systems have contributed greatly to the understanding of interdependence
and vulnerability suggests that this approach bears large potential to expand the
knowledge on collaborative transport systems.

1.3 Research objectives and approach

This dissertation attempts to contribute to the understanding of complexity in collab-
orative transport systems and to explore the impact of vertical collaboration across
transport modes and carriers on the emergence of system characteristics. A particular
focus is set on vulnerability emerging from collaboration, and how this vulnerability
stands in contrast to the synergies of collaboration.

The adoption of vertical collaboration in transportation systems adds a new layer of
complexity, which can alter the overall resilience to disruption. The current under-
standing of vulnerability in transportation is mainly based on the physical disruption
threats, which comes short of two essential aspects. First, vertical collaboration leads
to the emergence of structural network features and new roles of network components,
which can alter the structural static and therefore vulnerability of the system. Sec-
ond, vertical collaboration creates interdependencies between the actors involved and
their operations. These interdependencies produce a new type of vulnerability at the
collaborative level, which comes in addition to the physical threats. The new aspects
of vulnerability have the potential to offset the synergies created through collabora-
tion, which calls for a careful consideration of both synergies and vulnerabilities in
decision making on vertical collaboration.

A conclusive assessment requires an expansion of the system scope beyond the phys-
ical level, taking into account the arrangements between stakeholders at the collab-
orative level as well as the functional interdependence (coupling) between physical
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and collaborative level. Expanding the knowledge on vulnerability in complex decen-
trally operated transportation systems is crucial, since growing transport demand,
constrained infrastructure expansion, technological innovation, and increasing need
for sustainable solutions will further drive the relevance of collaboration and lead to
even higher complexity.

While a complexity angle in transportation systems is not entirely new in the trans-
portation literature, the existing body of scientific knowledge does not sufficiently
cover the collaborative aspect and the associated vulnerability. This is due to a lack
of appropriate multi-layer models that are able to capture the functional interdepen-
dence (coupling) between physical and collaborative level in large-scale transporta-
tion systems. Such models have supported a thorough understanding of complexity in
other cyber-physical systems such as smart power grids (Buldyrev et al., 2010), and
need to be established to enable a similar analysis in collaborative transportation.

The research conducted in this dissertation attempts to fill the knowledge gap on
complexity induced by vertical collaboration. The main research objectives are sum-
marized in the following:

• Analyze the emergence of structural network features and roles of network
components under vertical collaboration across transport modes and carriers

• Identify key drivers for vulnerability at the collaborative level based on network
and market structure

• Identify a trade-off between synergies and vulnerabilities of vertical collabora-
tion

• Develop analytical and simulation tools and provide managerial decision sup-
port in vertical collaboration strategy and policy making.

The science of complex networks provides a framework to study large-scale multi-
layered systems such as multi-mode and multi-carrier transportation systems. By
aggregating data, mapping it in a network, and analysing it with dedicated measures,
network science creates a relatively simple interface to explore complex relations at
large scale (Newman, 2010) where conventional operations research and optimization
models were likely to become intractable. We build a novel multi-layer network
model that is able to capture the impact of vertical collaboration and analyse it
with a combination of well-known metrics from network science and new methods
developed ourselves.
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Moreover, a mix of analytical computations and simulation-based methods is ap-
plied to establish general findings derived from random network classes and verify
them through simulation. The development of random network classes mimicking
the structure of real-world transportation systems allows for the systematic variation
of system characteristics to identify drivers of vulnerability. The findings are fur-
ther verified through the analysis of a real-world data set comprising all intermodal
transport services by rail and barge in the European hinterland in 2019.

1.4 Outline of the dissertation

This dissertation comprises 5 chapters. Chapter 1 serves as an introduction and
motivation for the research. The final Chapter 5 concludes the work and discusses
opportunities for future research. Chapters 2-4 contain the research studies con-
ducted as part of this dissertation project.

Figure 1.1 visualizes and describes how the research objectives outlined above are
addressed along these chapters. In chapter 2, the notion of connectivity in trans-
portation systems is extended under the emergence of structural network features
through integration of transport modes at the example of intermodal container trans-
port in Europe. Chapters 3 and 4 focus on vertical collaboration between carriers.
In Chapter 3, a model is established to capture the interdependence (coupling) be-
tween physical and collaborative level, and a deep-dive on the structural root causes
of vulnerability induced by vertical collaboration is performed. Chapter 4 analyzes
the trade-off between synergies and vulnerability depending on the level of collabora-
tion and its impact on physical transportation performance. Chapters 2-4 are briefly
introduced in the following.

An extended notion of hinterland connectivity to analyze multimodal in-
tegration in European hinterland service networks

This chapter analyzes changes in network structure under vertical integration of mul-
tiple transport modes in the European network for hinterland container transport.
Hinterland connectivity of a port is mostly treated as a local indicator, describing
the number of different hinterland locations served from a port via a direct service.
However, with multimodality being on the rise and transfer connections becoming
more feasible and common, the existing local notion of connectivity is not sufficient
anymore. This chapter extends the notion of hinterland connectivity by non-local
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Figure 1.1: The figure shows the different levels of analysis of transportation networks
with vertical collaboration in this dissertation and how they are captured by the different
chapters. All chapters address both levels and the coupling in a certain way. However, each
single chapter contributes something new to the understanding of vertical collaboration,
which is reflected in this figure. Chapter 2 deals with the impact of vertical collaboration
on the structure of (physical) transportation networks and addresses the need for a new
notion of connectivity at the physical level. In Chapter 3, a model is established to capture
the coupling (interdependence) between physical and collaborative level. It describes how a
given constellation of collaborations impacts the performance of physical transport. More-
over, the impact of changes at the collaborative level on the physical level can be assessed,
which allows for an analysis of vulnerability to disruption at the collaborative level. Chapter
4 addresses the dynamics of disruption (propagation) at the collaborative level, and how
the resulting vulnerability stands in relation to the synergies of collaboration.

(network) and multimodal aspects, and uses this notion to analyze hinterland con-
nectivity for the European hinterland transport network of scheduled rail and barge
services. The following research questions are addressed:

RQ2.1 Does the adoption of (multimodal) transfer connections in hinterland trans-
port require a new notion of connectivity? Which new aspects need to be
considered?

RQ2.2 What is the impact on the system capability to perform hinterland trans-
port? What is the impact on the roles and positioning of transshipment hubs
in the network?
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The results show that overall structural capability to perform hinterland transport
assignments increases strongly as transfer connections and multimodal routes are
established. Moreover, non-local measures show that ports with poor local connec-
tivity can still be well positioned within a vertically integrated network if they have
a connector role between the different network layers. Last but not least, all ports
benefit individually from multimodal integration, but some do more than others.
For instance, ’Multimodal hubs’ are the most important contributors to multimodal
integration, but their relative accessibility does not improve much.

Vulnerability of collaborative transport systems: A multi-layer network
model

In this chapter we analyze how the market structure of carriers and their position-
ing in the transport network drive vulnerability at the collaborative level of vertical
carrier collaboration. Therefore, the transportation network in our model is com-
plemented by a collaboration network representing the collaboration links between
carriers and the system impact of disruption to this new network layer is assessed.
The potential synergies of collaborative transport are influenced by the market struc-
ture of carriers, i.e. potential is highest if there is a large number of small and medium
sized carriers (Cruijssen et al., 2007a). The current body of literature, however, is
inconclusive whether market structure has a similar effect on vulnerability, meaning
that higher synergies would create higher vulnerability due to a high dependence of
the system on collaboration. This leads to the research question

RQ3.1 What is the impact of carrier market structure on the vulnerability of
collaborative transport systems?

Instead of demonstrating our results on particular instances of such multi-layer net-
works, we describe a population of networks by its structural properties, capturing
the constraints imposed by collaborations in an analytically tractable way. The
analysis is complemented by a simulation study on less tractable, but more realistic
networks to verify the analytical findings. The results indicate that market structure,
represented by disparity in carrier sizes, has a non-trivial impact on the vulnerability
of a collaborative transport network to targeted disruption at the collaborative level,
resulting from the interplay between a system’s dependence on collaboration and its
susceptibility to targeted attack. Networks are most vulnerable if they have inter-
mediate disparity in carrier sizes, i.e. carriers are overall similarly sized, but there
is some heterogeneity with a moderate gap between few larger and many smaller
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carriers. Networks with perfect uniform distribution of carrier sizes exhibit medium
to high levels of robustness whereas highly disparate networks exhibit the highest
robustness.

The impact of collaborative connectivity on the risk of failure cascades in
collaborative transport systems

This chapter studies the trade-off between synergies and vulnerability through ver-
tical collaboration. Since offering shared routes requires close alignment between
parties, collaborations are fueled by the exchange of data and the integration of in-
formation systems, which creates disruption threats in the form of technical failure,
cyber attacks, or organizational conflicts. Research has shown that failure in in-
terdependent networks can propagate and lead to a cascade of failures, which casts
doubt on the claim that more collaboration has a solely positive impact on system
performance, and rises the research question:

RQ4.1 Is there a trade-off between synergies and vulnerability from vertical col-
laboration?

RQ4.2 Can this trade-off be quantified depending on the level of collaborative
connectivity?

To answer this question, the network model from the previous chapter is coupled with
a model for propagation of cyber/false data disruption, and the impact on network
performance under varying levels of collaborative connectivity is observed for random
network models, simulated network instances, as well as for a network generated from
real-world data on intermodal transport services in the European hinterland. Results
show that increasing collaborative connectivity does not have a monotone effect on
performance, but there is a maximum at intermediate connectivity levels. Below this
threshold level, more collaborations have a mostly positive impact on performance,
since unused synergy potential is high while the risk of disruption causing a cascade
is low. Above it, failure cascades become larger and more likely while the marginal
added synergies are diminishing.
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2.1 Introduction

Hinterland transport fulfills the first and last stage of global transport of contain-
ers, i.e. it comprises the landside transport before and after maritime shipping.
Transport in the hinterland differs from maritime transport by shorter distances,
less opportunities for pooling due to more individual destinations, and consequently
disproportionately higher transport costs (Van Der Horst and De Langen, 2008). In
Europe, hinterland transport is carried out via different transport modes on road,
rail, and inland waterways (barge transport) (de Langen et al., 2017). Although road
transport is still predominant in many places as trucks are available on short notice
providing fast and direct transport (Vannieuwenhuyse et al., 2003), alternative trans-
port modes have gained traction in recent years as a result of increasing global trade
(European Commission, 2018), cost pressure, congestion on European highways, and
environmental aspects (Macharis et al., 2011).

The competitive position of sea ports depends on their capability to forward incoming
cargo from overseas to its final destination, and it is an important criterion for port
selection (Martínez Moya and Feo Valero, 2017). Such capability is associated with
the hinterland connectivity of the sea port. The definition of hinterland connectivity
in literature and practice is usually based on direct transport services between the
port and inland ports. This simple notion provides a highly relevant connectivity in-
dicator, but is insensitive to more downstream connecting services operated by means
of multiple modes and across the hinterland network. Rail and barge transport is
mainly fulfilled by scheduled services run by different operators, spanning an exten-
sive decentrally managed multimodal service network across the European hinterland
(Van Der Horst and De Langen, 2008). This network exhibits a high natural level of
complexity shaped under geographical, (geo-)political, and infrastructural influences
(Notteboom, 2010). Complexity in transportation networks comes with non-trivial
connectivity features that are often overlooked and require a holistic network connec-
tivity analysis. In multimodal systems, complexity is amplified by the integration of
different transport modes. Complex outcomes are not only driven by the the overall
network structure, but also by the connectivity across transport modes (Lee et al.,
2015).

Analyzing hinterland connectivity with a too simple notion of connectivity could
therefore lead to a misjudgement of the positioning of (inland) ports. On the one
hand, a port with many direct connections to poorly connected destinations would
seem to have great hinterland connectivity, while in reality it is quite isolated in the
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overall network. On the other hand, a port with only one connection leading to the
biggest transshipment hub in the network is quite well connected. To address these
shortcomings, the notion of hinterland connectivity is extended in two ways. First,
not only direct services and immediate neighbours are considered. As hinterland
transport allows for connections with transshipments, connectivity of a port goes
beyond its immediate neighbourhood. Second, the presence of multiple alternative
transport modes is captured. The more integrated use of rail and barge services
changes the positioning of (inland) ports in the network.

The science of complex networks provides a set of quantitative measures to system-
atically develop this extended notion of connectivity and apply it to the hinterland
transport service network in Europe. By aggregating data, mapping it in a network,
and analysing it with dedicated measures, network science creates a relatively simple
interface to explore complex relations (Newman, 2010). Using these techniques, we
follow a two step approach. In the first step, connectivity on network level is analyzed
along selected measures for each of the layers and the aggregated network. Building
on the work of de Langen et al. (2017), we derive how structural characteristics of the
two transport modes assign them a specific role in the hinterland network and how
they jointly create potential for multimodal transport. In the second step, hinterland
connectivity is analyzed on individual level. We distinguish between local connec-
tivity, non-local connectivity, and multimodal connectivity. Non-local connectivity
provides information about the positioning of (ports) in a wider network context, i.e.
their positioning as a start and end point of transport routes and as a transshipment
hub. Multimodal connectivity additionally shows how port positioning changes un-
der an increasing share of multimodal routes. An overview of the approach can be
found in Figure 2.1.

Our findings are twofold. On the one hand, existing qualitative findings and findings
with local scope regarding port development are substantiated through empirical
data, e.g. the role of extended gates in the hinterland (Roso et al., 2009; Veenstra
et al., 2012) and increasing competition for hinterlands between sea ports due to
higher hinterland connectivity (Notteboom, 2010). On the other hand, our extended
notion of connectivity creates new findings on hinterland connectivity. Results show
how connectivity of the European hinterland transport network changes as transport
services grow into a multimodal service network and the shares of transfer connec-
tions and multimodal transport routes increase, and how this affects the role and
positioning of (inland) ports in the system.
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Figure 2.1: In columns, various definitions (or levels) of port connectivity (local, network-
wide and multimodal) are given, while in rows, a description, underlying assumptions made,
the extent to which the level of connectivity is covered by the existing literature, and
the extent to which the progressive level of connectivity contributes by providing more
comprehensive insights are shown.

The remainder of this paper is organized as follows. The subsequent section comprises
a review of most relevant literature on hinterland transport and network connectivity.
Section 4.3 is dedicated to the introduction of the data set used and the methodology.
Section 4.4 comprises the results of the analysis, serving as a basis for the discussion
in Section 4.5. Section 4.6 concludes and provides an outlook for future research.

2.2 Theoretical background

Hinterland connectivity

Hinterland connectivity of (inland) ports is an important criterion for port choice in
container transport, and ports compete based on their ability to cater door-to-door
services more than port-to-port services (Martínez Moya and Feo Valero, 2017). Hin-
terland connectivity, after port costs, is the second most important factor for port
competitiveness (Parola et al., 2016) and is expected to become even more relevant
(Sdoukopoulos and Boile, 2020). Caballé Valls et al. (2020) find that intermodal hin-
terland connectivity is a determinant of the market share of a port in the (contested)
hinterland. Hinterland connectivity, very often in the context of port performance
and port selection criteria, is studied in many different ways, without there being
a generally accepted definition. For instance, Tavasszy et al. (2011) use a strategic
network choice model to study the relation between port choice and intermodal con-
nectivity, whereas Ferrari et al. (2011) use a gravity model to evaluate hinterland
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connectivity by means of accessibility of three Italian ports. Moreover, van den Berg
and de Langen (2011) find in a case study with the port authority of Barcelona
that active hinterland connectivity strategies by port authorities can attract cargo
volumes from distant hinterlands.

In an empirical study, de Langen and Sharypova (2013) analyze hinterland connectiv-
ity as a port performance indicator of sea ports in Europe and find that intermodal
connectivity is increasing in Europe. However, due to lack of data they can only
use measures such as the number of direct connections and services to inland ports.
Inland ports, however, are usually not only connected to a single dedicated sea port,
but have connections with multiple sea ports and other inland ports. In such a way,
they form a network of services, which is illustrated in de Langen et al. (2017). As a
result, hinterland connectivity becomes more than just the number and frequency of
sea port-to-hinterland connections. It is also about the connectivity of inland ports
to other sea ports and to further hinterland destinations. As a consequence of more
connected hinterlands, sea ports start to compete for hinterland areas (Notteboom *
and Rodrigue, 2005). This is studied in a number of case studies for specific hin-
terlands, e.g. Spain (Garcia-Alonso et al., 2019), Austria (de Langen, 2007), and
Adriatic Sea (Acciaro et al., 2017). Garcia-Alonso et al. (2019) find that the immedi-
ate port hinterland remains relatively captive, whereas distant hinterland is fiercely
contested. Distant hinterland has not been in focus for a long time when studying
intermodal connections, since they were difficult to reach with intermodal services.
With hinterland becoming more connected, distant hinterland destinations become
more accessible as routes with transfers at intermediate inland ports can be planned.
For the study of hinterland connectivity, this means that a broader notion beyond
direct services is needed to fully grasp the characteristics of hinterland transport
services as a network on a continent-wide scale.

The existing body of literature embracing the network aspects of hinterland transport
is very limited, especially regarding empirical studies. Studies of network connectiv-
ity exist though for comparable transport networks, e.g. Burghouwt and Redondi
(2013) study connectivity in air transport networks, and Ducruet et al. (2010) study
connectivity of maritime networks. The work of Mishra et al. (2012) comes closest to
our suggested notion of non-local and multimodal connectivity. They use connectiv-
ity measures for prioritization in multimodal transit planning and find that transit
connectivity varies across nodes, links, transfer centers, and regions. In the context
of hinterland transport, Halim et al. (2016) use a multi-objective optimization ap-
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proach to generate plausible port hinterland distribution structures for large regions
and continents. Studies of hinterland network connectivity incorporating the multi-
modal aspect, where barge and rail services are fully integrated, are even more rare.
de Langen et al. (2017) published the only study that captures both transport modes
on a European level in the scope of their work. However, they are only studying
the amount and distribution of direct services, but do not looking at the multimodal
network connectivity that emerges from the resulting network.

The reviewed studies on hinterland connectivity suggest that hinterland transport
needs to be considered at the network level, and that multiple transport modes need
to be considered integrally, although this adds complexity. However, most studies
do not fully capture both of these aspects, and if they do, only for a very limited
geographical scope. Our work aims at filling this gap through a comprehensive study
of hinterland connectivity at European level with intermodal services interpreted as
an integrated multimodal system.

Network science as a tool to study hinterland connectivity

The science of complex networks provides us with the suitable tools for such an
analysis. Starting with two fundamental models revealing that small-world networks
feature short average path length (Watts and Strogatz, 1998) and scale-free networks
are robust-yet-fragile (Albert et al., 2000), it has developed into a powerful framework
to analyze the complex topology of real-world systems. As network science became
more sophisticated, more applications to a large number of social (Radicchi et al.,
2008), ecological (Jeong et al., 2000), economical (Bonanno et al., 2004), or physical
real-world (Buldyrev et al., 2010) systems were studied. Prominent applications for
transportation networks are airline networks (Cardillo et al., 2013b; Du et al., 2016;
Guimera et al., 2005), public transport networks (de Domenico et al., 2014; Latora
and Marchiori, 2002; Luo et al., 2019), or maritime shipping networks (Calatayud
et al., 2017; Ducruet and Zaidi, 2012; Kaluza et al., 2010).

In recent years, the study of multiplex networks faced increasing popularity as it
allows for a more accurate mapping of many real-world systems, e.g. multi-mode
public transport systems (de Domenico et al., 2014), multi-operator airline networks
(Cardillo et al., 2013b), and seaport-airport networks (Parshani et al., 2010). Mul-
tiplex networks are a type of multi-layer networks, where each network layer shares
the same set of nodes, but the set of links is different. Multiplexity has a non-trivial
impact on a system’s structure and function, as connectivity between the layers am-
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plifies complexity of the system (Lee et al., 2015). Multimodal transport networks
are multiplex since each transport mode forms a separate layer. An analysis of how
layers mutually enhance each other and the overall system requires careful assessment
of connectivity within and between the layers.

Modeling the network of intermodal hinterland transport services as a multiplex net-
works, we obtain an instrument to study network connectivity of European hinterland
services and fill the research gap outlined above.

2.3 Methodology

Dataset

For our analysis we use a data set containing all intermodal services scheduled in the
European hinterland including transport mode, transport time, and number of weekly
services. Alternative transport modes are barge and rail. All ports/terminals within
a city are grouped into a single transshipment area that serves a single market and
is represented by a node in the network. We use the term node to avoid confusion
and to be in line with network terminology. It stands for an area where multiple
terminals may reside.

In 2019, the dataset comprises 26 countries, 337 cities, 496 terminals and 111 trans-
port operators. The intermodal links data set is a highly suitable tool to study the
European hinterland network from a structural perspective as scheduled services are
a good proxy for available transport links and routes. The data set is rather com-
plete for the covered regions, as indicated by de Langen et al. (2017) based on a
benchmarking of the actual container throughput volume and the capacity implied
by the data set. Moreover, the data is accurate as it is collected and verified with
two independent sources, intermodal carriers and ports/inland terminals. Neverthe-
less, resulting from the exclusive route planning with barge and rail services only,
some illogical routes can arise for connections where shippers would always use other
transport modes such as truck or even sea vessel. Most notably, there are some routes
from central Europe via Spain to the UK. The data set is visualized in Figure 2.2 and
more information about data collection, validation, and preparation can be found in
Appendix 2.A.
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(a) Full network (b) Barge (c) Rail

Figure 2.2: Visualization of hinterland service network. Barge services form a dense
network along major inland waterways in Northwestern continental Europe. Rail service
span across the entire continent.

Description of approach

The methodology applied to this data set comprises a systematic analysis of hin-
terland transport connectivity on a European level by using measures from network
science. There is a large number of articles and books providing a summary of these
tools and how they can be used efficiently, see Newman (2010) for an overview. For
multiplex networks, Boccaletti et al. (2014) and Battiston et al. (2017) are useful.
We use a combination of measures suitable for standard and multiplex networks to
provide answers to the questions raised in the previous sections.

Our analysis comprises the network of rail and barge services in the European hinter-
land. Even though truck services are a competitive alternative for almost any trans-
port assignment in the hinterland, they are not included in the analysis. Trucking
can either be a competing mode with scheduled multimodal services or a mode used
mostly for first or last mile. In both cases, trucking does not need to be incorporated
explicitly to perform a meaningful analysis since it is either part of the competitive
environment, or when focusing on (inland) port to (inland) port transport, it is out
of scope. The core of the analysis is connectivity of multimodal hinterland networks
and how such a network of scheduled services can possibly provide an alternative to
direct truck transport.

Network connectivity - Network layer description and multimodal inter-
face

In an initial step, connectivity on network level is analyzed for rail and barge networks
separately as well as for the joint multimodal network representation. This allows for
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a characterization of the two network layers and how they jointly form a multimodal
network. The analysis covers network size dimensions (number of services, number of
connections), service attributes (frequency, duration, distance), as well as structural
and intra-layer connectivity aspects (’density’: ratio of services to nodes, ’rich-club’:
density among highly connected nodes, ’assortativity’: preference of nodes to attach
to nodes of similar degree). Most importantly, shortest-path-connectivity, i.e. the
transport time between two arbitrary nodes in the network with intermodal services,
is analyzed for both layers and for the integrated network. It comprises the two
measures efficiency (reciprocal of average shortest path length) and interdependence
(share of all shortest paths that include multimodal transshipment) provide insights
about the potential of multimodal integration. An interpretation of these measures
and formulae used are found in Appendix 2.C.

After the general description of layer characteristics, focus shifts to multimodal con-
nectivity, i.e. the nodes where the two layers are connected. These nodes are crucial
for enabling intermodal transport, which is why they receive particular attention.
The set of nodes connected by multimodal links is called multimodal interface. Our
analysis of the multimodal interface reveals to what extent and where the service
networks overlap.

Node connectivity - Local, non-local and multimodal

The focus of the second part is hinterland connectivity on node level. We distinguish
between local, non-local, and multimodal connectivity. Local connectivity describes
connectivity in the immediate neighbourhood of a node, assuming that transport
is only happening on direct connections without transshipments. It is measured by
the node degree, i.e. the number of nodes that a node is connected to by a direct
service. Non-local connectivity describes the positioning of a node within the entire
network. It is based on the assumption that routes can be planned along multiple
links via transshipments. We distinguish between accessibility and transshipment
attractiveness. Accessibility describes how well a node can be reached through in-
termodal services from an arbitrary node in the network. It is measured by the
network measure closeness centrality, which is computed by the shortest path length
between a node and all other nodes in the network (Newman, 2010). Transshipment
attractiveness describes the positioning of a node as a transshipment hub, i.e. how
often logistics service providers will plan a route including a transshipment at that
node. The network measure betweenness centrality is used to determine transship-
ment attractiveness. It is computed as the share of shortest paths between all pairs
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of nodes that cross the respective node (Newman, 2010). The connectivity measures
used are formally defined and interpreted in more detail in Appendix 2.D. Each of
these measures has a unimodal and a multimodal version. The unimodal versions are
calculated based on the assumption that routes can only be planned using services of
the same transport mode (combined unimodal), whereas in the multimodal version,
mixed mode routes are feasible.

The analysis starts with a categorization of local node connectivity adopted from
Battiston et al. (2017). It is derived from two local measures. First, the number of
distinct services, which is referred to as (overlapping) degree. Overlapping degree
is used to refer to the total degree of a node in a multiplex network, as opposed to
the layer degree, which only counts links in the respective layer. Second, a partici-
pation coefficient is calculated, measuring the spread of connectivity across rail and
barge services, i.e. the homogeneity of layer degrees. The combination of these two
measures allocates nodes to categories with similar role in the network. A formal
definition of the categorization approach is shown in Appendix 2.D.

In the next step, non-local connectivity is benchmarked against local connectivity
in order to show how the additional information gathered from non-local measures
is relevant to accurately assess the positioning of a node in a multimodal network.
Similarly, multimodal connectivity measures are benchmarked against their unimodal
counterpart to illustrate how nodes can improve their connectivity if multimodal
transshipments are established. Last but not least, accessibility and transshipment
attractiveness of nodes are compared to show what their profile is within the network.
Usually being the start and end point of intermodal routes, sea ports will mainly
care about their position in the network in terms of accessibility, whereas inland
ports might rather want to position themselves as land-to-land transshipment hubs
on intermodal routes.

2.4 Results

2.4.1 Network connectivity - Network layer description and
multimodal interface

The analysis of network connectivity comprises an isolated view on the two layers
with regard to network characteristics and similarities, as well as a multimodal view
with regard to joint functionality and multimodal service interface.
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Measure \ Instance Barge Rail Multimodal
Number of
weekly services 6,901 12,743 19,644

Number of direct
connections 366 1,309 1,609

Avg. number of
weekly services 18.86 9.73 12.21

Avg. service
duration [days] 2.67 2.14 2.36

Avg. aerial
distance [km] 183 637 548

Efficiency 0.03 0.18 0.28
Interdependence - - 0.40
Density 0.039 0.017 0.015
Rich club
coeff. [≥ 5] 0.44 0.10 0.10

Rich club
coeff. [≥ 25] 1.00 0.47 0.47

Degree
assortativity -0.60 -0.22 -0.28

Barge Rail Intermodal
interface

Overlap - Nodes 0.29 0.83 0.12
Overlap - Edges 0.23 0.81 0.04

Table 2.1: Network connectivity analysis per layer and as an integrated multimodal sys-
tem. Key findings: 1) Efficiency (a measure for connectivity by shortest path lengths)
increases disproportionately through multimodal integration, i.e. it is higher than the sum
of the barge and rail scores. 2) Interdependence (share of shortest paths that contain multi-
modal transshipment) shows that 40% less shortest paths are available without multimodal
transshipment 3) Multimodal transshipment is only possible at 12% of all nodes (Overlap -
Nodes)
.

The network is visualized in Fig. 2.3 and results are shown in Table 2.1. Barge
services are intended to shift container load away from congested connecting sea
ports to extended gates (Notteboom, 2010; Veenstra et al., 2012) and other inland
terminals. From these inland terminals, containers can be further transported by rail
or truck. Thereby, pressure on road infrastructure in these regions can be relieved.
This shows in the data, where barge services are limited to central western Europe,
i.e. the Netherlands, Belgium, Germany, and France. Barges provide high-frequency,
short to medium-haul services (137km average distance) that aim at flexible and cost-
efficient transportation in areas with the highest transport demand, which reflects in
high network density (0.039).

Rail services form an extensive network connecting both central and remote areas in
the hinterland, and providing fast, long-haul connections (637km average) to more
remote destinations, which comes with a lower service density (0.017). In terms of
weekly services and distinct connections served, the rail network is much larger than
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the barge network with 12,743 weekly services serving 1,309 connections, compared
to 6,901 weekly barge services serving 366 connections. It provides an alternative to
truck transport almost all the way to the final destination of containers.

Figure 2.3: Visualization of hinterland network in Central Europe in 2019. Nodes with
barge services only are coloured in purple, rail nodes in dark yellow, and multimodal nodes
(rail and barge services offered) in red. Node size indicates total number of weekly services.
The majority of multimodal activity is happening in Northwestern continental Europe,
where multimodal nodes connect the high frequency, short-haul barge network with the
long-haul train network.

The potential of multimodal integration for network connectivity shows by efficiency
of the integrated network. Efficiency describes the connectivity by shortest path
lengths between all OD pairs in the network. The multimodal score (0.28) exceeds the
barge (0.03) and barge (0.18) score disproportionately, showing the large potential.
This is strengthened by the fact that 40% of shortest paths in the fully integrated
system would include a multimodal transshipment, shown by the interdependence
measure. The multimodal interface of nodes with both rail and barge services is
formed by only 12% of all nodes. Given the highly complementary service structure
and specific role of transport modes, it becomes evident that these 12% are crucial
for the connectivity of the network in multimodal transport. See Appendix 2.C for
a more extensive interpretation of these results.
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2.4.2 Node connectivity - Local, non-local and multimodal

Node categorization - Local vs. multimodal connectivity

With this refined picture of the network layers and their role for European hinterland
connectivity on network level, our focus shifts towards node connectivity under the
extended notion of hinterland connectivity.

Figure 2.4: The graph shows a node categorization by overlapping degree zi (local con-
nectivity) and participation coefficient Pi (multimodal split). Four categories emerge from
the (Pi, zi)-values of nodes: Multimodal hub, Focused, Connector, Unimodal. Without the
participation coefficient Pi measuring the multimodal service split of nodes, ’Unimodal’,
’Focused’, and ’Connector’ could not be distinguished.

In the first step, local connectivity is benchmarked against multimodal connectivity.
Therefore, a node categorization adopted from Battiston et al. (2017) is used. It is
defined by the overlapping degree zi (sum of rail and barge degrees) representing local
connectivity and participation coefficient Pi representing the multimodal connectivity
split. Pi becomes 1 if a node has the same degree across all network layers and 0 if
all layer degrees are 0, except for one layer, i.e. a node has either only rail or only
barge connections. A scatter plot of the (Pi, zi)-pairs in the 2019 network is shown
in Figure 2.4. Multimodal connectivity reveals four different clusters, which provide
information about the positioning of nodes beyond their degree. Most nodes are in
the ’Unimodal’ category of nodes with Pi = 0, i.e. nodes served by one mode only.
The remaining nodes with Pi > 0 represent the multimodal interface, which divides
into three categories. The category ’Focused’ contains nodes whose connections are
primarily offered by the same mode plus a few other connections with the other
mode. They tend to play a central role in their focus layer, but are as well access



34 An extended notion of hinterland connectivity

points to the other layers. The ’Connector’ category is connected to a similar extent
in both layers. Their overlapping degree is on average a bit lower than that of the
’Focused’ cluster though. Thus, these nodes do not necessarily have an important
hub role, but mainly a transshipment role between the layers. The last category
is called ’Multimodal hub’ as the nodes in this category are highly connected hubs
with balanced participation across both layers. There are only two multimodal hubs,
Rotterdam and Antwerp. Since these two are also covering large parts of the maritime
inbound container flow, they have an outstanding role for both modes and the whole
system. A sketch of the multimodal structure of each node category is sketched in
Figure 2.5.

Figure 2.5: Sketch of node categories ’Unimodal’ (1), ’Focused’ (2), ’Connector’ (3),
and ’Multimodal hub’ (4). The categories are distinguished by their multimodality, by the
number of direct connections they offer in total and by the split of these connections between
transport modes.

Geographical positioning of node categories

Figure 2.6: Snapshot of 2019 hinterland network in central Europe. Same color code
(by node category) as in Fig. 2.4: Purple - ’Multimodal hub’; Red - ’Focused’; Turquoise
- ’Connector’; Yellow - ’Unimodal’. Node size by overlapping degree. ’Multimodal hubs’
can clearly be identified as Rotterdam and Antwerp. ’Focused’ and ’Connector’ nodes are
mainly found along major inland waterways Rhine, Meuse, and Scheldt.
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Figure 2.6 shows the hinterland network with nodes coloured by their role. As pointed
out before, most nodes are ’Unimodal’, whereas multimodal nodes can only be found
in central/western Europe. ’Focused’ nodes are mainly found along major inland
waterways Rhine (Duisburg, Cologne, Ludwigshafen), Rhône (Fos-sur-Mer, Lyon),
Elbe (Hamburg), and Zeekanaal Gent–Terneuzen (Ghent, Terneuzen). Interestingly,
all these nodes have their focus on rail connections, despite being located at major
inland waterways. In fact, many of them act as dry ports (Roso et al., 2009) or
extended gates (Veenstra et al., 2012) that are connected by barge to sea ports
and by many different rail connections to their further hinterland. They collect the
large influx coming from ports in multi-port gateway regions (Notteboom, 2010) via
barge and distribute it to their final destinations after a transshipment to truck or
rail services. According to the generic framework for intermodal transport network
design developed by Woxenius (2007), structure around ’Focused’ nodes follows a
corridor design (cf. Figure 1 in Woxenius (2007)).

’Connectors’ are mostly smaller (inland) nodes in the Rhine-Meuse-Scheldt delta (e.g.
Liège, Tilburg), along the river Rhine (e.g. Andernach, Mannheim, Strasbourg) and
some smaller rivers or canals (e.g. Trier/Mosel, Hanover/Leine, Riesa/Elbe). More-
over, there are a few larger ’Connector’ nodes such as Amsterdam, Zeebrugge, and
Le Havre. In a unimodal network, most nodes in this category would have no special
significance, but their access to both rail and barge services gives them a special role
in a multimodal network. Together with the dominant hubs in the region, the large
number of ’Connector’ nodes clustered in northwestern continental Europe creates
alternative choices for intermodal routes. Without these transshipment opportuni-
ties, alternatives would be limited and more truck transport is required if there is
disruption in ’Multimodal hubs’ or ’Focused’ nodes. Such flexible routing opportu-
nities are in high demand as observed in Notteboom (2010). In the framework by
Woxenius (2007), this network structure falls in the dynamic routing category, which
in hinterland shipping terms is known as synchromodal transport.

Non-local connectivity

In the next step, non-local connectivity is analyzed. The existing node categorization
is kept in order to track the change induced by non-local measures. Figure 2.7 shows
relation between the local measure overlapping degree and the non-local measure
closeness centrality, which describes the accessibility of a node in a network as a
start and end point of routes. It becomes apparent that low degree nodes can have
high closeness, showing that accessibility cannot be deduced from local measures
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(a) Unimodal (b) Multimodal

Figure 2.7: (a) Local (degree) vs. non-local (closeness centrality) node connectivity. The
graph shows how node positioning differs between local and non-local perspective (close-
ness/accessibility). Among nodes with low local connectivity (degree < 15), non-local con-
nectivity can be very different. Accessibility depends a lot on the connectivity of the neigh-
bours of a node. (b) shows the same plot, but with the multimodal version of accessibility.
Same color code (by node category) as in Fig. 2.4.

only. For instance the city of Poznan (Poland) has only two direct connections, but
these two lead to Rotterdam and Duisburg, which are two of the most central hubs.

In Figure 2.8, instead of closeness/accessibility we analyze betweenness, which de-
scribes a node’s attractiveness as a transshipment hub. Betweenness/transshipment
attractiveness scores are more in line with the degree, suggesting that a large number
of distinct connections supports the positioning of a node as a transshipment hub.
There are some exceptions, most notably Bilbao, Valencia, and Barcelona in Spain,
as well as Barking and Daventry in the UK, which form the small cluster of ’Uni-
modal’ nodes (yellow) with high transshipment attractiveness and degree <10. In
the case of Barcelona, this is due to the node being a sort of bridge between Spain
and large European hubs such as Antwerp, Milano, and Ludwigshafen. The rail ser-
vice Valencia-Barking is the only direct connection between the UK and mainland
Europe, thus every route going to/from the UK would go through these two nodes,
giving them a bridge function as well. This needs to be put into perspective though,
given that shippers would most likely not send a container to the UK via Valencia,
but rather book a vessel or a direct truck service.
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(a) Unimodal (b) Multimodal

Figure 2.8: (a) Local (degree) vs. non-local (betweenness centrality) node connectiv-
ity. The graph shows how node positioning differs between local and non-local perspective
(betweenness/transshipment attractiveness). Degree and transshipment attractiveness are
correlated, but there are a number of exceptions with low/medium degree, but high trans-
shipment attractiveness in the right lower part of the graph. These nodes often have a bridge
function between sparsely connected regions, e.g. Barcelona for Spain and the rest of main-
land Europe. (b) shows the same plot, but with the multimodal version of transshipment
attractiveness. Same color code (by node category) as in Fig. 2.4.
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(a) Closeness/accessibility (b) Betweenness/transshipment attractive-
ness

Figure 2.9: Unimodal vs. multimodal connectivity (non-local). The graph shows how non-
local connectivity changes if multimodal transport is established. A node’s benefit from mul-
timodal transport can be interpreted by how far to the right of the (x = y)-line it is located.
Same color code (by node category) as in Fig. 2.4. (a) For closeness/accessibility, most
’Unimodal’ (yellow) nodes get a disproportional benefit. (b) For betweenness/transshipment
attractiveness, the two ’Multimodal hubs’ strengthen their position the most.

Multimodal connectivity

The analysis of multimodal connectivity reveals how the positioning of nodes changes
if routes containing services by both transport modes can be planned. Figure 2.9 visu-
alizes how nodes compare in their unimodal and multimodal positioning. In general,
scores increase under multimodal transport, since more opportunities for routing
are available. For accessibility (Figure 2.9 (a)) ’Unimodal’ nodes seem to make the
biggest leap, which seems surprising considering that ’Unimodal’ nodes by definition
are not even active in both modes, but benefit the most from intermodal transport.
This is a result of the small multimodal interface. Nodes at the multimodal interface
have the privilege to be already connected to both subnetworks, especially ’Multiplex
hubs’ play central roles as distributing hubs in both, being easily reachable from any-
where. ’Unimodal’ nodes, however, are only connected by transport services of the
same mode, thus they are not reachable from the other mode network and therefore
have to rely on intermodal links. In the case of transshipment attractiveness, most
nodes seem to improve their score in a similar way, except the ’Multimodal hubs’
Rotterdam and ’Antwerp’, which strengthen their position as a transshipment hub
disproportionately.
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(a) Unimodal (b) Multimodal

Figure 2.10: Comparison of different non-local positionings of nodes (close-
ness/accessibility vs. betweenness/transshipment attractiveness). Same color code (by node
category) as in Fig. 2.4. (a) shows unimodal positioning. ’Multimodal hubs’ and most ’Fo-
cused’ nodes are both accessible and attractive for transshipment. ’Connector’ nodes are
accessible, but not so well positioned for transshipment. (b) shows multimodal positioning.
Similar picture, only ’Unimodal’ nodes become more accessible.

Positioning of nodes - Accessibility vs. transshipment attractiveness

The relevance of accessibility and transshipment attractiveness for ports differs de-
pending on their role in the system. For sea ports, accessibility is most important,
since they are usually start or end point of a trip and short distances to other nodes
in the network are crucial for their competitive positioning. For inland ports it is
more important to be in the center of many transport routes as a transshipment hub,
thus transshipment attractiveness is more relevant.

Figure 2.10 illustrates the positioning in terms of betweenness/transshipment attrac-
tiveness and closeness/accessibility. It shows that multimodal nodes (’Connector’,
’Focused’, ’Multimodal hub’) tend to be at the higher end of accessibility as well as
transshipment attractiveness. However, ’Connector’ nodes have relatively low trans-
shipment attractiveness, even lower than many ’Unimodal nodes, which is surprising
given their position at the multimodal interface and many of them being inland
ports. In a multimodal system, poor transshipment attractiveness despite having
access to both transport modes indicates a weak competitive positioning. It is also
worth mentioning that Duisburg exhibits the highest transshipment attractiveness
in the unimodal setup, even higher than Rotterdam and Antwerp. For inland ports
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like Duisburg, transshipment positioning is more important than for sea ports, which
are usually start or end points of routes. Nevertheless, Rotterdam has the highest
transshipment attractiveness in the multimodal setting, indicating that it could the-
oretically function as a hinterland transshipment hub as well. If short-sea shipping
was added to the data, Rotterdam would certainly live up to that role.

2.5 Discussion

In this paper we analyzed connectivity of the European hinterland transport network
on node and network level. The paper partly adds to the findings of de Langen et al.
(2017), who conducted the first and only other empirical exploration of this network
on a Europe-wide scale, on the role and characteristics of the different transport
modes and the joint functionality as a multimodal transport network. Moreover, the
paper extends the existing predominantly local notion of hinterland connectivity by
non-local and multimodal aspects. The results yield some relevant conclusions for
(inland) port and terminal operators, but also policy making entities.

The European hinterland container transport network is an extensive network of
scheduled transport services carried out via barge or rail. The network exhibits
a hub-and-spoke structure around the two dominant global hubs Rotterdam and
Antwerp, and a number of smaller hubs. The two transport mode layers are com-
plementary and fulfill specific roles in the network in terms of geographical coverage
and service structure. The barge network provides high volume short to medium-
haul connections in regions of high transport demand, i.e. northwestern continental
Europe. The rail network provides long-haul connections across the entire European
hinterland. As a result, multimodal nodes, which are active in both networks, are
only found in northwestern continental Europe.

The multimodal version of the network exhibits high structural capability to perform
hinterland transport assignments. Integrating the two mode networks does not only
create a larger joint network, functionality is also amplified by the opportunity to
perform intermodal transport. For instance, intermodal transport increases the num-
ber of available shortest paths by 67% (interdependence of 40%, cf. Table 2.1) and
the shortest-path-connectivity (efficiency) increases from 0.03 (barge) and 0.18 (rail)
to 0.28 (multimodal). However, even though the two mode networks provide greater
structural functionality in an intermodal setting, they are only connected through
a relatively small set of multimodal transshipment nodes (12%). As a consequence,
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this small multimodal interface plays a crucial role in tapping the full potential of
the network. The potential of intermodal transport has been shown in a number of
previous works, for instance on intermodal network design (van Riessen et al., 2015b)
or pricing of intermodal services (Kim and van Wee, 2011). A characterization of
multimodal hinterland transport by means of a complex networks approach, and a
quantification of the potential of multimodal integration on a Europe-wide scale, is
however novel in this field, substantiating and extending previous studies empirically.

On node level, we gather new information from our data about the positioning of
nodes in a non-local and multimodal context using the extended notion of hinterland
connectivity. Given the increasing number of transfer connections and multimodal
transshipment opportunities in the hinterland (European Commission, 2018), these
are important insights complementing the existing knowledge about local and uni-
modal hinterland connectivity.

We found four categories of nodes characterizing their local positioning by local and
multimodal connectivity: three categories of nodes that are at the multimodal inter-
face plus ’Unimodal’ nodes as fourth category. Just by adding the split of multimodal
connections, we were already able to refine the connectivity notion and gather mean-
ingful complementary information. The role of Rotterdam and Antwerp as ’Multi-
modal hubs’ would become visible only by looking at the total number of connections.
However, the role of ’Focused’ nodes, which are multimodal, but with a focus on one
of the two modes, would not become apparent without looking at multimodality.
The fact that these nodes are mainly found along major inland waterways acting as
extended gates (Veenstra et al., 2012) by collecting container influx from few high-
frequency barge connections to sea ports and distributing it to the further hinterland
by rail or truck would require actual qualitative knowledge about the respective (in-
land) ports. Similarly, the role of ’Connector’ nodes is only discovered with data on
multimodality and ’Unimodal’ could not be distinguished from the other categories.

Adding a non-local (network) perspective further refines the understanding of how
nodes are positioned in a multimodal system. If only local connections are looked at,
the fact that all these services form a complex network and connectivity goes beyond
local positioning is missed, for instance in de Langen and Sharypova (2013). Nodes
that seem relatively poorly connected due to few direct connection, can actually be
quite well positioned within the network. For instance, the node Poznan has only
two connections, but they lead to the hubs Rotterdam and Duisburg, which results in
high accessibility for Poznan, being easily accessible from the whole network via these
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two hubs. Similarly, the node Barcelona has few direct connections, but connects
Spain and (indirectly) the UK with the rest of mainland Europe as a sort of bridge,
which results in a high transshipment attractiveness that is not visible in the local
perspective. These network connectivity aspects will further grow in relevance when
sequential use of multiple intermodal transport services as alternative to long-haul
truck transport becomes more of a standard procedure in hinterland transport. Port
authorities can use this type of analysis for their hinterland strategies. For instance,
the hinterland strategy of the port of Barcelona (van den Berg and de Langen, 2011)
could have used more advanced information about the role of rail connectivity in
their attempt to attract distant hinterland.

By combining non-local and multimodal aspects, information is gathered about the
change of roles of nodes if unimodal networks are integrated and become a mul-
timodal system. Interestingly, the most crucial nodes to establish a multimodal
network, i.e. the nodes at the multimodal interface are not necessarily the ones that
strengthen their position the most. For instance, Rotterdam and Antwerp improve
their accessibility only by an amount proportional to other multimodal nodes. Most
’Unimodal’ nodes though face a disproportionately high accessibility increase. Their
positioning improves as they get access via the multimodal nodes to their non-native
mode network that they are not directly connected to. In turn, multimodal nodes
strengthen their position as transshipment hubs, above all Rotterdam and Antwerp.
This is a delicate finding given the fact that the large sea ports are designed for
transshipment from sea-to-land, but not land-to-land, so they do not really act as
transshipment points on hinterland routes. The only land-to-land transshipment at
sea ports takes place in the form of container exchange between sea ports by barge
transport. The data, however, suggests that sea ports could take on a multimodal
hub role if the required infrastructure was available. If short-sea connections were
added to the data, they would certainly live up to that role. The only node with
transshipment attractiveness on the same level as Rotterdam and Antwerp is Duis-
burg. Duisburg probably makes a better hub for land-to-land transshipment for
reasons that are not captured in the data, such as the more central geographical
location in the European rail and waterway infrastructure network, port strategies
(van den Berg and de Langen, 2011), or European corridor strategies as part of the
Ten-T programme (European Commission, 2018). The latter provides an interest-
ing connection between the service network discussed in this work and the backbone
network of intermodal infrastructure (railways, inland waterways, transshipment fa-
cilities), which defines the set of connections, on which a service can be offered. For
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intermodal infrastructure development programmes like Ten-T, it should be possible
to express the objectives of infrastructure investments in the Ten-T network in terms
of our connectivity indicators, which is interesting for European policy makers.

These results are subject to a number of assumptions and limitations. The paper
employs a pure network perspective, which comes short some operational aspects
like congestion, disruption, or reliability of services. This is partly inherent to the
methodology, but also a consequence of a lack of data on capacities and demand.
The scope of this paper, however, is on network characteristics based on available
transport services, and less on the fulfillment of demand.

Assumptions were also made on service connections and transshipments. The matu-
rity level of intermodal transport varies strongly across Europe, hence some of the
service connections discussed do not really exist (yet) in practice. Nevertheless, in-
termodal transport is strongly promoted by European policies to become a central
element of the cargo transportation of the future. Since we define nodes as transship-
ment areas, in which multiple terminals can reside, operational difficulties can arise
with transshipment between two services and even more so if they are operated by
different means of transport. In the best case, containers can be transshipped within
one dedicated intermodal terminal with only one operational step. In the worst case,
a truck has to be used to move the container to a different terminal where the sub-
sequent transport service starts. The larger ports have within-port shuttle services
between their terminals, which can be used for transshipment. Moreover, many hin-
terland services stop at multiple terminals within a port, which reduces the number
of complicated transshipments. The integration of modes could further be hindered
by issues related to information exchange and collaboration between carriers. The
planning of routes with transfer connections requires that the carriers involved col-
laborate to some extent to facilitate transshipments. These difficulties might create
a small bias towards routes with more transshipments in our analysis. The number
of shortest routes with more than 2 transshipments is however very limited.

In the absence of truck transport, routes that seem illogical from a geographical
perspective such as Madrid-Rotterdam-Milan can be shortest paths, if transport
time on each leg is short. We argue that such routes are indeed conceivable in an
integrated multimodal system with flexible routing, if spare capacity can be used
cost-efficiently and the delivery deadline allows for it. Such routes are for instance
often seen in air passenger transport. Last but not least, we do not distinguish
between different types of nodes in our analysis, even though in practice it makes a
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difference if a node is also a sea port or located in the hinterland. This resulted in
some interesting findings such as the perfect structural positioning of Rotterdam and
Antwerp for land-to-land transshipment.

2.6 Conclusion

This paper has addressed connectivity in European hinterland transport from a com-
plex networks perspective, focusing on how connectivity of the network increases as
hinterland transport services continue to grow into a multimodal service network and
how this affects the role and positioning of nodes in the system. Therefore, the notion
of connectivity, a so far predominantly local measure in the hinterland context, has
been extended by non-local (network) and multimodal aspects.

The results comprise several findings about the non-local and multimodal aspects
of hinterland connectivity in Europe, some of which are established beyond pure
structural terms. First, overall structural capability to perform hinterland transport
assignments without the use of trucks increases tremendously as transfer connec-
tions and multimodal routes are established. Integrating the rail and barge networks
creates a connectivity boost that goes beyond the sum of their individual layer con-
nectivity.

Second, in contrast to networks without transfer connections, nodes in a multimodal
system need to care about their positioning in terms of their accessibility within the
network and their role as a transshipment hub. Nodes can have a high local degree,
but still be poorly connected if their connections lead to irrelevant destinations or
if they are located in the network periphery with few chances of being part of mul-
timodal routes. Nodes with low degree in turn can be very accessible if they are
connected to well connected nodes. All nodes benefit from multimodal integration,
but some do more than others. On the one hand, ’Multimodal hubs’ are the most im-
portant contributors to multimodal integration, but their relative accessibility does
not improve much. On the other hand, ’Unimodal’ nodes that used to be limited
to one transport mode get indirect access to new destinations through multimodal
transshipment and improve their connectivity greatly.

These findings are relevant for two groups of stakeholders. First, terminal and trans-
port operators are interested in the competitive positioning of the port they are
located in and the ports they serve, respectively, as it directly affects their success.
Hinterland connectivity is an important port indicator, but the existing notions do
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not capture the network and multimodal aspects even though these will become
more relevant as hinterland becomes more connected. By including accessibility and
transshipment attractiveness, our extended notion provides an instrument to capture
these aspects and allows terminal and transport operators to make better informed
strategical and tactical decisions.

Second, policy making entities are made aware that there can be a mismatch between
contribution and benefit when establishing a multimodal system. This can result
in a misalignment of incentives, which is a big issue in a system that would rely
on collaboration and trust between all actors involved according to Van Der Horst
and De Langen (2008), who find that free-riding problems, a lack of contractual
relationships, information asymmetry, and a lack of incentives are major barriers
for the performance in decentral hinterland supply chains. A careful analysis of
accessibility and transshipment attractiveness is therefore highly recommended for
intermodal infrastructure and corridor planning.

Even though the European hinterland network is relatively unique due to its manifold
shades of complexity, the approach and the extended notion of connectivity apply
generally. Some of the learnings of this work could be generalized to a broader cat-
egory of multiplex networks. Hinterland container networks in other regions suggest
themselves, but also other multimodal transport networks such as urban public trans-
port networks (e.g. bus, tram, metro, light rail) or interregional passenger transport
networks (airplane, train, bus) are logical choices.

This paper provides groundwork on hinterland connectivity from a complexity and
network angle. There are several interesting research directions to further develop the
results of this work. By integrating an extended data model including for instance
demand data, trucks, or short-sea shipping services, our results could be better es-
tablished beyond structural terms, enhancing their practical relevance. Moreover, a
longitudinal perspective on the development of the services over time would be use-
ful to assess the network’s relation with the backbone infrastructure network and to
track the impact and target achievement of multimodal corridor and infrastructure
investment programmes over time. Last but not least, the hinterland service network
could also be studied as a multi-carrier network. Establishing multimodal transport
in the hinterland necessarily requires the integration of services by different carriers,
who might be competitors or simply not willing to integrate their services and share
data. This opens up a whole new challenge for policy makers, for instance with
regards to alignment of incentives and information infrastructure.



46 An extended notion of hinterland connectivity

Appendix

2.A Dataset

Data collection

Data is collected in collaboration with intermodal carriers and transshipment termi-
nals. The data set is updated continuously in two ways. First, newly offered services
are added and terminated services are removed from the data set over time. Sec-
ond, the geographic coverage of the data set is expanded. We possess one instance
of the data set per year retrieved in spring season. The data set comprises origin
and destination terminal of each transport service in the European hinterland and
the transport mode used for this service. Furthermore, carrier company, recurring
weekly schedule, number of weekly services, and transport time in days are available
for each entry in the data set.

Data validation

On the one hand, the data set is rather complete for the covered regions, as indi-
cated by (de Langen et al., 2017) based on a benchmarking of the actual container
throughput volume and the capacity implied by the data set. On the other hand, the
data is accurate as it is collected from two independent sources. First, connections
and schedules are collected from intermodal carriers constituting the backbone of the
data set. Second, the data is verified and refined in collaboration with ports and
inland terminals as they have information on arrival and departure of intermodal
hinterland services.

Data preparation

The data is prepared for network analysis along two steps. First, origins and destina-
tions are aggregated from terminal to city level as cities are considered transhipment
areas and terminals are serving a single market defined by the transhipment area they
are in. As a consequence, all terminals within a city’s boundaries are represented by
a single node and therefore intra-city connections become redundant self-loops and
are removed from the data set. Second, all parallel services are aggregated in order
to avoid parallel edges, unless they are on different transport modes. Thus, there
can be at most two edges between two cities and only if there is a transport link by
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barge and by rail. As services are being aggregated, the sum of service frequencies
is taken and in case of different transport times the minimum is taken.

2.B Notation

We define a multiplex graph G = (V, E, L) with a set of nodes V representing cities in
the European hinterland, a set of edges E representing transport connections, and a
set of layers L = {α, β} representing the two transport modes rail (α) and barge (β).
The set of nodes with rail access is denoted by V α and the set of nodes with barge
access by V β . Nodes serving both modes form the multimodal interface defined by
the set V α∩β ∶= V α ∩ V β . Further Vk≥x denotes the set of nodes with degree ≥ x and
Vi the set of nodes that are reachable from node i, i.e. the connected component
that i is part of. N describes the number of nodes in V . A similar notation is used
for the number of nodes (Nα, Nβ , Nα∩β , Nk≥x, Ni) the subsets of V .

The set of edges E divides into Eα and Eβ , which describe the set of transport
connections in the rail and the barge layer, respectively. Eα∩β is the set of direct
connections that have parallel edges in the two transport modes. M (Mα, Mβ , Mα∩β)
are the number of edges in the respective (sub-)set of E. Edges have attributes
indicating transport time (τ) and weekly service frequency (ρ). For an edge (i, j) ∈
Eα(Eβ), τα

ij(τ
β
ij) describes the transport time on this edge with the respective mode

and ρα
ij(ρ

β
ij) describes service frequency. For the multimodal instances (3) and (4), we

use the minimum of transport times τα∨β
ij ∶=min(τα

ij , τβ
ij) and the sum of frequencies

ρα∨β
ij ∶= ρα

ij + ρβ
ij .

For a node i ∈ V, kα
i (k

β
i ) describes its degree by connections in the rail (barge) layer.

Multiplex degrees are denoted by kα∨β
i for the total number of different connections

(excluding double counts of parallel services) or kα∧β
i for the total number including

parallel services. The latter is known as overlapping degree. Weighted node degree
is defined as the number of weekly services ρ run on edges adjacent to a node, and
is denoted analogously to the unweighted degree by kα,ρ

i (k
β,ρ
i , kα∧β,ρ

i ).

Shortest paths and their lengths differ depending on the network instance considered,
which needs to be accounted for in the notation. We write σα

τ (i, j) (σβ
τ (i.j)) for the

set of shortest paths between nodes i, j ∈ V rail (barge) layer, which is relevant for
network instances (1) and (2). Further, σα∨β

τ (i, j) describes the set of shortest i-j-
paths consisting of unimodal trips only, i.e. each shortest path must be either a pure
rail or a pure barge trip. This corresponds with the combined unimodal instance (3).
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Measure/Instance Barge Rail Multimodal
Number
of weekly services ∑(i,j)∈Eβ ρβ

ij ∑(i,j)∈Eα ρα
ij ∑(i,j)∈E ρα∧β

ij

Number
of direct connections Mβ Mα Mα +Mβ −Mα∩β

Avg.
service duration [days]

1
Mβ ∑(i,j)∈Eβ τβ

ij
1

Mα ∑(i,j)∈Eα τα
ij

∑(i,j)∈Eα τα
ij+∑(i,j)∈Eβ τβ

ij

Mα+Mβ

Avg.
service distance [km] Avg. aerial distance between cities [km]

Efficiency 1
N(N−1) ∑i≠j∈V

1
dβ

τ (i,j)
1

N(N−1) ∑i≠j∈V
1

dβ
τ (i,j)

1
N(N−1) ∑i≠j∈V

1
dα∧β

τ (i,j)

Interdependence 1
N−1 ∑j∈Vi

∣σα∧β
τ (i,j)∣−∣σα∨β

τ (i,j)∣
∣σα∧β

τ (i,j)∣

Density 2Mβ

Nβ(Nβ−1)
2Mα

Nα(Nα−1)
2M

N(N−1)
Rich
club coeff. [k ≥ x]

2Mβ
k≥x

Nβ
k≥x
(Nβ

k≥x
−1)

2Mα
k≥x

Nα
k≥x
(Nα

k≥x
−1)

2Mk≥x

Nk≥x(Nk≥x−1)

Degree
assortativity Pearson correlation of node degree and avg. neighbour degrees

Table 2.2: Calculation formulae used for network connectivity.

Measure/Instance Barge Rail Full
Overlap
- Nodes

Nβ

N
Nα

N
Nα∩β

N

Overlap
- Edges

Mβ

Mα+Mβ−Mα∩β
Mα

Mα+Mβ−Mα∩β
Mα∩β

Mα+Mβ−Mα∩β

Table 2.3: Calculation formulae used for multimodal interface analysis.

For the multimodal instance (4), we use σα∧β
τ (i, j), which extends the shortest path

notation by including intermodal trips in the set. Shortest paths are measured by
transport time, which is why we use τ in the notation. For shortest paths by number
of transport legs, τ is omitted. The number of shortest paths corresponding to the
shortest path sets σ is denoted by ∣σα

τ (i, j)∣ (∣σβ
τ (i.j)∣, ∣σα∨β

τ (i, j)∣, ∣σα∧β
τ (i, j)∣) and

their length (total transport time) is denoted by dα
τ (i, j), dβ

τ (i, j), dα∨β
τ (i, j), and

dα∧β
τ (i, j).

2.C Details: Network connectivity

Formulae

See Appendix 2.B for relevant notation. Table 2.2 and 2.3 show an overview of the
formulae used for the network connectivity analysis.

Interpretation of network connectivity measures

The measures cover network size (number of services, number of connections), ser-
vice attributes (frequency, duration, distance), as well as structural and intra-layer
connectivity aspects (density, rich-club, assortativity). The size measures purely de-
scribe the size of the network and the mode subnetworks. Number of weekly services
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shows the total number of actual shipments, whereas the number of direct connec-
tions describe how many distinct point-to-point connections exist in the network.
Service attributes frequency, duration, and distance provide information about the
differences in service structure of the different modes. Connectivity measures reveal
the level of interconnectedness, i.e. the share of node pairs with a direct connection.
Density comprises interconnectedness of the entire network instance. Results allow
for statements on the required average frequency of transshipments in intermodal
routes as high density means that many containers can be delivered directly, whereas
low density requires more transshipments. The rich-club coefficient describes density
among nodes with a degree greater or equal to a certain number. Thus, if higher
than general density, it shows that large terminals are more likely to connect to each
other. Even though high rich-club coefficients seem logical from a network design
perspective, low coefficients can sometimes be observed in competitive transportation
networks, in which different operators run their isolated network with a central hub,
while hubs of different operators are rarely connected. Degree assortativity measures
the correlation between the degree of a node and the average degree of its neighbours
in the same layer, thereby showing if nodes tend to connect to nodes of similar degree
or not. Most importantly, shortest-path-connectivity, i.e. the transport time between
two arbitrary nodes in the network with intermodal services, is computed for both
layers and for the integrated network. The two measures efficiency (average shortest
path length) and interdependence (share of all shortest paths that include multimodal
transshipment) provide insights about the potential of multimodal integration. In-
terdependence is a measure to quantify the added value of modal integration by
analyzing the dependence of the network on intermodal routes. For a specific node,
interdependence describes the share of all shortest paths to all nodes, in which more
than one transport mode is used. Nodes with high interdependence are dependent on
the availability of integrated multimodal services as their accessibility would suffer if
transport modes were isolated. On network level, interdependence is defined as the
average over all nodes, showing the general relevance of intermodal connections in
the network.

Expanded results of network connectivity

Results of the layer characterization are shown in Table 2.1. In terms of weekly
services and distinct connections served, the rail network is much larger than the
barge network with 12,743 weekly services serving 1,309 connections compared to
6,901 weekly barge services serving 366 connections. This doesn’t necessarily mean
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that rail is simply more attractive as these numbers have to be viewed relative to the
available infrastructure. While there are 217,081 km of active railways in the EU-28
countries, inland waterways only cover a length of 40,895 km as of 2018 (European
Commission, 2018). Despite shorter duration of services, the rail network serves much
longer distances of 637 km compared to the barge network (183 km), indicating that
rail transport is significantly faster.

These figures make clear that the rail and barge network are both relevant, but they
have a different service structure, which suggests that they serve different types of
transport assignments. Barge provides high-frequency, short to medium-haul services
that aim at flexible and cost-efficient transportation. Rail can make use of an exten-
sive network and provides fast, long-haul connections to more remote destinations.

The different structure of the two mode networks reflects as well in the connectivity
figures. With a density of 0.039 in 2019, the barge network is more than twice as
dense as the rail network (0.017), which supports the idea of a highly connected,
high frequency network of services with focus on areas with the highest transport
demand. Density of the rail network is lower due to the different character of the
network serving point-to-point long-haul connections across the entire continent.

The potential of multimodal integration for network connectivity shows by efficiency
of the integrated network. Efficiency describes the connectivity by shortest path
lengths between all OD nodes in the network. The multimodal score (0.28) exceeds
the barge (0.03) and barge (0.18) score disproportionately, showing the large po-
tential. This is strengthened by the fact that 40% of shortest paths in the fully
integrated system would include a multimodal transshipment, shown by the interde-
pendence measure.

The rich-club coefficient describes the connectivity between nodes with a degree
over a certain threshold (McAuley et al., 2007). Rich-club figures confirm that the
barge network is more densely connected than the rail network, in particular between
highly connected nodes. Among nodes of degree k ≥ 5, only the barge network shows
rich club behaviour, whereas among nodes of degree k ≥ 20, both networks form a
rich-club. The k ≥ 20 rich-club of the barge network is even fully connected, but
it contains only two nodes, Rotterdam and Antwerp. Rich-club behaviour of the
aggregated network is comparable to that of the rail network, whereas density is
lower than in both mode networks. Thus, aggregation of transport modes results in
a better connectivity between hubs, whereas connectivity of the full network becomes
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Measure/Instance (1) Barge (2) Rail (3) Combined unimodal (4) Multimodal

Degree kβ
i kα

i kα∨β
i kα∧β

i

Degree - weighted kβ,ρ
i kα,ρ

i - kα∧β,ρ
i

Closeness Ni−1
N−1

N−1
∑j∈Vi

dβ
τ (i,j)

Ni−1
N−1

N−1
∑j∈Vi

dα
τ (i,j)

Ni−1
N−1

N−1
∑j∈Vi

min(dα
τ (i,j),d

β
τ (i,j))

Ni−1
N−1

N−1
∑j∈Vi

dα∧β
τ (i,j)

Betweenness 1
(N−1)(N−2) ∑u,v∈V

∣σβ
τ (u,v∣i)∣

∣σα∧β
τ (u,v)∣

1
(N−1)(N−2) ∑u,v∈V

∣σα
τ (u,v∣i)∣

∣σα∧β
τ (u,v)∣

1
(N−1)(N−2) ∑u,v∈V

∣σα∨β
τ (u,v∣i)∣
∣σα∧β

τ (u,v)∣
1

(N−1)(N−2) ∑u,v∈V
∣σα∧β

τ (u,v∣i)∣
∣σα∧β

τ (u,v)∣

Table 2.4: Calculation formulae for nodal measures applied to each network instance.

more sparse, suggesting that the barge network mainly supports the rail network in
densely connected areas where many rail hubs are located.

The network exhibits slightly negative degree assortativity, i.e. nodes of high degrees
tend to connect to nodes of low degree. This shows that a lot of services go through
hubs, which distribute the traffic to less central destinations. In particular the barge
networks is quite strongly disassortative, which shows that it relies strongly on its
hubs, primarily Rotterdam and Antwerp.

2.D Details: Node connectivity

Formulae

See Appendix 2.B for relevant notation. Table 2.4 shows an overview of the formulae
used for the calculation of measures for the analysis of node connectivity.

Local node categorization

The definition of the measures for node categorization is adopted from Battiston et al.
(2017) and is based on the general connectivity of a node assessed by its overlapping
degree zi = kα∧β

i and a participation coefficient Pi, which helps to distinguish if a
node is relevant for the entire multiplex network or only locally for one mode:

Pi = 2[1 − ( kα
i

kα∧β
i

)
2
− (

kβ
i

kα∧β
i

)
2
].

Pi becomes 1 if the number of edges contributing to the overlapping degree kα∧β
i are

equally distributed across the layers and 0 if all edges are in the same layer.
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Interpretation of measures

In the following the nodal characteristics used in the analysis in Section 2.4.2 and
the measures to test them are introduced in more detail as well as their application
over the four instances.

Local connectivity/degree of a node is indicated by degree values, i.e. the num-
ber of direct connections of a node to other nodes. In the hinterland context, degree
describes the number of transshipment area that a transshipment area is connected
to by a direct service. In multiplex networks, each node has multiple types of degrees.
In accordance with the network instances defined in Section 4.3, we distinguish be-
tween barge (1), rail (2), aggregated (combined unimodal/3), and overlapping (mul-
timodal/4) degree. The difference between aggregated and overlapping degree is the
double counting of parallel edges, which is only done for the overlapping degree.

Accessibility of a node is quantified by closeness centrality, which is based on short-
est transport times to other nodes. It describes how well a node can be reached
through intermodal services from an arbitrary node in the network. It is computed
as reciprocal of the sum of shortest path distances from the node to all other nodes in
its connected component normalized by the size of the connected component. Short-
est paths weighted by transport time are used, since it is more realistic than assuming
equal transport time for each service. The four network instances are distinguished
by the set of edges available for routing. For the mode networks (1)-(2), only edges
of the respective modes can be used. For the combined unimodal network (3), both
modes are available, but routes need to be unimodal. The multimodal instance (4)
allows for intermodal routes.

Transshipment attractiveness of a node is measured by betweenness centrality,
revealing its importance for the network as a transshipment point. It is computed
as the share of all shortest paths between all pairs of nodes that go through that
node. As for closeness centrality, we consider shortest paths weighted by transport
time and the four network instances are distinguished by the set of edges available for
routing. However, the reference number of all shortest paths is always based on the
multimodal network (4) in order to obtain comparable results across instances. In
contrast to closeness, which is a performance indicator both on nodal and aggregated
level, betweenness centrality does not have strong performance implications when
analyzed on network level, but it is a good indicator for the relevance of a node or
a group of nodes for the functioning of the network as a whole. The significance of
betweenness for hinterland connectivity therefore lays in the identification of those
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nodes that strengthen their role as transshipment points in a multimodal network,
thereby playing a crucial role in leveraging the potential of other nodes and the
network as a whole.
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3.1 Introduction

3.1.1 Motivation

Carriers can combine their individual transport offerings through collaborative pro-
vision of services, with the aim to improve the overall service level (destinations,
flexibility, transport time) or to reduce costs. Collaboration among carriers is known
to be an important lever to reap the potential of decentrally operated transporta-
tion systems as it enables the integration of otherwise isolated proprietary transport
networks, facilitating the flow of goods and creating a more efficient and flexible
transportation system (Cardillo et al., 2013b; Cruijssen et al., 2007b). Examples of
collaborative transport can be found in container shipping, air passenger transport,
and public transport.

However, successful collaborative transport is subject to a number of conditions,
among which are competitive and commercial alignment (Agarwal and Ergun, 2010;
Houghtalen et al., 2011; Özener et al., 2011), organizational readiness (Cruijssen
et al., 2007b; Sanchez Rodrigues et al., 2015), and sufficient technical infrastruc-
ture (Buijs and Wortmann, 2014). If these conditions are not met, collaborations
might not yield the expected benefits and can even be prone to failure. In particular,
impacts such as legislative (antitrust) or policy changes, conflicts, technical failure,
or cyber attacks (Kumar and van Dissel, 1996; Tonn et al., 2019) can lead to the
collapsing of collaborative systems with adverse impact on the transportation per-
formance. As a result, vulnerabilities are created through collaboration, which come
in addition to physical threats such as low water levels for barges or rail infrastruc-
ture breakdown for train sets. These vulnerabilities are often associated with threats
emanating from information systems that are used in support of the collaborative
arrangements. A transportation system that makes extensive use of collaboration is
heavily reliant on these collaborations being intact (Cardillo et al., 2013b).

Dependencies induced by collaboration can have severe impacts, as painfully high-
lighted in the 2017 (Not)Petya hack, a malware attack in the Ukraine that infected a
large number of companies and institutions across the world including several trans-
portation companies such as Maersk/APM Terminals (USD 300m damage) and TNT
Express (USD 400m damage), disrupting their operations or even bringing them to
a halt (Greenberg, 2018). Even after shipping companies improved their response
mechanisms to such disruption, the frequency of incidents increased (Tonn et al.,
2019) and the issue stayed high on the agenda of transportation managers and gov-
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erning parties. In 2020, CMA CGM suffered from a ransomware attack, and despite
being able to limit the impact on their own operations, they had to cut all external
access to their IT applications and booking systems 1.

In the light of this potentially severe impact of disruption, it is crucial to understand
the inherent vulnerability created through collaboration transport systems are facing,
and to identify drivers of vulnerability in order to be able to assess the need for
preventive measures.

3.1.2 Theoretical background

Collaborative transport may be horizontal or vertical. Horizontal collaboration in-
volves carriers that provide similar services, possibly in competition, for which re-
sources can be shared to enhance capacity or frequency of service. Vertical collab-
oration involves carriers providing transportation services that can be executed in
sequence to provide a combined transportation service along a path. In between
those connecting services, transshipment is required.

The existing body of literature extensively shows potential synergies of collaborative
transport including ways and conditions to realize them. e.g. through maximizing fill
rates (Cruijssen et al., 2007a), reducing empty runs (Adenso-Díaz et al., 2014; Ergun
et al., 2007; Lin and Ng, 2012), finding optimal locations Hernández et al. (2011),
Teye et al. (2017), and Teye et al. (2018), and optimize supply network pooling (Pan
et al., 2013). Potential synergies of collaborative planning in general are substantial,
for instance with respect to cost synergies (Adenso-Díaz et al., 2014; Cruijssen et al.,
2007a), or carbon footprint reduction (Demir et al., 2016; Lin and Ng, 2012).

Research on vulnerabilities in transportation systems focuses mainly on physical
threats. Bottlenecks in road networks are identified using weighted spectral analysis
(Bell et al., 2017), disaster response is addressed by finding optimal depot locations
(Bell et al., 2014), and parameters to measure the impact of shocks such as strikes,
collaboration, or schedule changes are derived with econometric methods (Gillen and
Hasheminia, 2016). As stated above, collaborative transport is not only facing the
threat of disruption to physical services. Offering intermodal services in hinterland
transport, for instance, requires extensive alignment, synchronization, and planning
between carriers and terminal operators, with an increasing need for decision support
(Agamez-Arias and Moyano-Fuentes, 2017). This highlights that vertical collabora-

1Source: https://www.offshore-energy.biz/cma-cgm-confirms-cyber-attack/
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tion does not only happen at the physical level, but also at the digital and information
level through connected systems (Altuntaş Vural et al., 2020). The rise of informa-
tion and communication technology in the form of RFID, sensor, and blockchain
technology will further contribute to this development (Harris et al., 2015). As a re-
sult, there is a growing need to consider vulnerabilities of transport systems beyond
those of the physical systems and include vulnerabilities of the highly interdependent
collaborative (information) systems that are progressively used in transportation.

3.1.3 Aim of research and introduction to approach

The knowledge gap with regard to vulnerabilities induced by collaboration in trans-
portation is not simply a consequence of lack of awareness, since the aforementioned
incidents have already put these vulnerabilities in the spotlight. However, in order
to capture the complex interdependence between physical transportation and collab-
oration from a system perspective, while allowing for a systematic assessment of the
drivers of vulnerability, appropriate models are needed. We argue that such models
are currently lacking.

In this paper, we propose to build such models based on the science of complex
networks. This discipline provides a proven approach to analyze the vulnerability of
large-scale networked systems, including systems with multiple interdependent layers
(Kivela et al., 2014). In fact, complex networks scientists first looked at interdepen-
dent systems from the vulnerability angle before even incorporating the benefits of
network layer integration in their models. For instance, Buldyrev et al. (2010) show
that such systems are prone to cascading failure, where failure in one network propa-
gates back and forth between network layers and can lead to complete disintegration
of the network. In many real-world interdependent systems, e.g. communication-
power coupled systems, layer integration exhibits a trade-off between network func-
tionality and vulnerability, depending on the inter-layer coupling mechanism (Korkali
et al., 2017). Schneider et al. (2013) developed strategies to select immune nodes to
improve resilience of communication-power coupled systems.

In this paper, we will use complex network models to analyse vulnerabilities emerg-
ing from collaborative transportation and we will present results. In particular, we
develop a new multi-layer network model of transportation systems with vertical
collaboration between carriers, who each operate their own proprietary network of
transport services. In this system, carriers have the possibility to establish dyadic
collaborations, enabling them to provide shared sequential transportation chains in-
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cluding transshipments. Transportation services and collaborations between carriers
are represented in a network with two separate network layers. The collaboration
layer comprises carriers as nodes and their dyadic collaborations as edges. The physi-
cal layer is defined by attributed edges representing transportation services associated
with the operating carrier, and nodes representing transshipment points, e.g. ports
or inland terminals. Our focus is on vertical collaboration. Despite touching upon
certain aspects of horizontal collaboration such as the similarity of services, the core
of our analysis addresses vertical collaboration with consecutive services and trans-
shipments.

3.1.4 Contribution

In order to analyse vulnerabilities that emerge from large-scale collaborative trans-
portation systems, we develop an integrated transportation-collaboration model. Our
model derives relationships between vulnerabilities emerging from bilateral carrier
collaborations and general system characteristics such as market structure. The
model is sophisticated enough to capture the complex interdependencies between
transport services and carrier collaborations including the associated transport per-
formance. At the same time, it is simple enough to be applied to large random
network populations and allow for the systematic assessment of the impact of vary-
ing network structures on vulnerability. Verification of the model is achieved by
showing consistency of results across two different random network classes represent-
ing collaborative transportation systems at different levels of proximity to real-world
networks with an analytical and a simulation-based approach.

Our model can provide useful insights for policy making on vertical collaboration in
real-world networks and supports the prioritization of preventive measures. In the
scope of this work, we show that the market structure of carriers, i.e. the disparity in
number of services operated, has a non-monotone impact on vulnerability to targeted
disruption against the collaborations of selected carriers. There is no clear intuition
as to what is the impact of an increase in carrier size on vulnerability. On the one
hand, it can have a positive impact as less collaboration is required if there is only
a few large carriers, hence the magnitude of collaboration disruption is smaller. On
the other hand, having a large number of small and medium sized carriers balances
the disruption threats and thereby mitigates the risk of creating a single point of
failure. By means of a quantitative assessment, we find that networks are most vul-
nerable if they have intermediate disparity in carrier sizes, i.e. carriers are overall
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similarly sized, but there is some heterogeneity with a moderate gap between a few
larger and many smaller carriers. Networks with perfect uniform distribution exhibit
medium to high levels of robustness, whereas highly disparate networks exhibit the
highest robustness. Vulnerability under variation of market structure is therefore not
a monotone curve, but has a minimum at intermediate disparity levels. Our findings
substantiate the conjecture that a comprehensive analysis of collaborative transport
should not only account for the potential synergies, but also for the concomitant vul-
nerabilities. In particular, the role of market structure should be considered carefully
as it has a different effect on vulnerabilities as compared to synergies.

3.1.5 Outline

The remainder of this study is organized as follows. Sections 3.2 is dedicated to the
introduction of the model alongside relevant concepts and assumptions. Section 3.3
is about the evaluation and verification of the model to produce meaningful results.
Section 4.4 presents and discusses the results of the analysis of market structure.
Section 4.6 concludes and provides an outlook for future research.

3.2 Model formulation

3.2.1 Concepts

Before formulating the model, we define a number of relevant concepts and illustrate
them in the context of intermodal transport in the seaport hinterland, which is
also our domain of application. Intermodal transport involves the flexible use of
alternative transport modes train and barge, possibly resulting in transport chains
involving multiple transport modes and carriers. Enabling such transport chains
requires vertical collaboration between carriers. The aim of intermodal transport is
to provide more flexible, resilient, and sustainable transport systems with little need
for truck transport.

3.2.1.1 Collaborative and physical level

We distinguish between the physical and the collaborative level of a collaborative
transportation system. The physical level describes the network of physical trans-
portation and transshipment services, and the carriers that operate these transporta-
tion services. For simplicity purposes, we abstract away from detailed physical trans-
shipment processes between consecutive transportation services in a transport chain
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as well as from collaboration between terminal operators involved in these trans-
shipment processes. Disruption at the physical level comprises the unavailability of
physical transport services, as a result of for instance low or high water levels, or
(un)planned rail maintenance.

The collaborative level addresses activities beyond the physical movement of goods,
which include non-physical coordination efforts and information exchanges between
involved parties required to enable collaboration. In intermodal transport, coordi-
nation is necessary between a number of parties, especially truck, train, and barge
carriers, as well as terminal operators. Coordination efforts include, for instance,
sharing of booking and planning information, redistribution of costs and benefits,
tracking of deliveries, and error handling.

In our network model, the collaborative level and the concomitant coordination ef-
forts are formalized through bilateral carrier collaborations mapped in a separate
network layer consisting of carriers as nodes and collaborations as edges. We define
a collaboration between two carriers as a dyadic agreement between two carriers to
provide a joint portfolio of transport routes built from shared transport services on
consecutive network legs. Collaborations come at least with basic coordination ef-
forts and information exchanges to ensure feasibility of transshipment, but can be
more advanced. In intermodal transport, a basic collaboration could entail sharing
of data on schedules and availability capacity on manual request as well as man-
ual coordination of bookings and compensations between carriers. More advanced
collaborations come with an interface enabling integrated booking of transportation
services involving both carriers at either carrier’s platform or even a shared interor-
ganizational information system (van Baalen et al., 2008). These systems can include
automated compensation schemes for service sharing and automated coordination of
transshipment with terminal operators.

3.2.1.2 Synergies, vulnerability, and disruption

Vulnerabilities are inevitably linked to the synergies that are created through collab-
oration, as these synergies are at risk. In the context of this work, synergies through
collaboration are created by exploiting unused potential of existing transport services.
The potential is unused when carriers provide their services in isolation. Services of
multiple carriers can only be offered as part of joint transport routes when the in-
volved carriers facilitate integrated booking and transshipment between consecutive
transport services. This comes with the need to jointly plan transport services to
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avoid unnecessary waiting times between arrivals and departures of consecutive trans-
port services. Also, when integrated bookings are provided, there is a need to, for
example, redistribute costs and benefits among participating carriers and to provide
compensation for missed connections. When such collaborative arrangements are
made, the performance of intermodal transport improves. Indeed, when more (joint)
transport routes are offered, there are more options to transport freight efficiently,
frequently and timely between origins and destinations. As a result, intermodal
transport becomes more competitive as compared to direct truck transport.

We define vulnerability by the probability and the impact of disruptions on network
performance, and we focus on disruptions at the collaborative level. For instance,
while coordinating intermodal transport chains, intermodal carriers depend on each
other for the quality of exchanged information on service schedules, bookings, avail-
able capacities, transshipment plannings, and so on. If carriers fail to provide their
partners and involved terminals with the required data or if the data is of poor qual-
ity, e.g. resulting from a cyber security breach or poor data management, transport
chains performance deteriorates or even collapses. Disruption at the collaborative
level can also be caused by strategic misalignment in collaborations, e.g. from a
commercial, competitive, legislative (antitrust), or trust perspective. External influ-
ences such as new regulations or new physical infrastructure can lead to an imbalance
of benefits of collaboration between partners, or even to collaborations becoming ob-
solete for one of the two or both parties. The consequence of disruption at the
collaborative level can be the failure of collaboration links. Vulnerability at the col-
laborative level is driven by the potential magnitude of the impact of disruption and
how susceptible the network is to this impact.

3.2.2 Problem setting

Before we develop our model for the analysis of vulnerability induced by vertical col-
laboration in a transportation system and the role of specific system characteristics,
we formulate a number of model requirements.

First, the interdependence between collaborative and physical level needs to be cap-
tured by our model, i.e. the impact made by specific collaborative arrangements on
transportation performance needs to be represented. We choose a multi-layer network
approach with a physical and a collaboration layer, since complex networks have suc-
cessfully been used to analyse vulnerability of large-scale multi-layer systems under
variation of specific characteristics. However, collaborations and physical transport
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services in collaborative transport systems are interdependent (coupled) in a way that
is different from the standards for multi-layer networks defined in Kivela et al. (2014),
which requires the development of a new model with a physical layer of transport ser-
vices and a collaboration layer, in which dyadic carrier collaborations are mapped.
Typically, layers are connected through bidirectional node-to-node mappings. In
communication-power coupled systems, for instance, communication servers rely on
a power station for energy supply, whereas power stations rely on a communication
servers for control (Buldyrev et al., 2010).

Figure 3.1: The figure shows both network layers and their dependence according to the
model. The connectivity of the transport layer depends on the presence of links in the col-
laboration layer. While carrier B can offer shared transport routes with both other carriers,
carriers A and C can only do that with carrier B, but not with each other. As a result,
connection 1-2-5 (if 1-2 is operated by carrier A) and 4-6-5 are not feasible, despite the
existence of transport services on these connections. The effect of disruption is twofold.
Failure of collaboration links leads to more infeasible connections, however not all collab-
oration links are equally critical to transport functionality. If A-B fails, it would cause
more impact than if B-C fails, since A-B enables a higher number of multi-carrier paths.
Moreover, since disruption is assumed to happen to carriers, causing them to lose all their
collaboration links, disruption at carrier B would be most severe causing the loss of both
existing collaboration links.

In our setup, carriers in the collaboration layer are associated with the services they
operate in the physical network, and the capability to use these transport services in
an efficient collaborative fashion depends on the presence and constellation of collab-
oration links. As a result, nodes in the collaboration layer (carriers) are mapped to
edges (transport services operated by the respective carrier) in the transport layer in
a 1-to-n fashion. If there is a link between two carriers in the collaboration network,
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paths formed in the transport network can include successive services operated by
the two carriers connected through transshipments. Failed or non-functional col-
laboration reduces functionality as the set of available routes is curtailed (Cardillo
et al., 2013b). See Figure 3.1 for a visualization and a descriptive example of the
interdependence between collaborative and physical level

Second, a suitable method to carve out the vulnerability impacts of specific system
characteristics needs to be found. Real-world transportation systems are rarely de-
signed from scratch, but rather emerge decentrally under certain surrounding condi-
tions, which leaves limited freedom to adjust inherent system characteristics through
policies. Optimizing network design in such large-scale systems is not only computa-
tionally challenging, it is also less meaningful than creating knowledge on general re-
lationships between system characteristics and vulnerability. Therefore, rather than
finding optimal network designs, we aim to provide a tool to estimate vulnerabilities
based on given network characteristics. In order to achieve this, the model needs to
be applicable to large random network populations with varying system character-
istics in order to derive the impact of specific characteristics on vulnerability. The
need for such an experimental set-up with tunable system characteristics makes it
difficult to conduct the analysis with real-world transportation network data, since
the required amount of data on hundreds of different networks is not available. As an
alternative, we use random network classes to create populations of proxy networks
representative of real-world collaborative transportation networks. These networks
can be randomly generated in large quantity and with the desired characteristics.
The method is described in Subsection 3.2.4.

Third, we need to measure transportation performance to meaningfully compare the
vulnerability of collaborative arrangements on networks. From a system perspective,
the aim of collaborative transport, in particular of vertical collaboration, is to create
more feasible transport routes in order to connect more origins and destinations and
to connect them through faster and more flexible services while achieving a higher
utilization of existing transport infrastructure. Specifically in intermodal transport,
a flexible and fast collaborative transport system with train and barge services is
aimed at in order to reduce the environmental footprint and to reduce congestion on
highways by providing a competitive alternative to unimodal truck transport. We
need performance measures that reflect the level of achievement of these goals and
can be evaluated with low computational effort. The definition of these measures
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and an evaluation approach to compute them under the different random network
classes is provided in Subsection 3.3.1.

Fourth, the change of transportation performance under disruption needs to be cap-
tured, which requires plausible assumptions regarding the disruption mechanisms.
These are discussed in Subsection 3.2.3. Moreover, a method to evaluate the im-
pact of disruption on network performance for the given random network classes is
described in Subsection 3.3.2.

3.2.3 Model assumptions

Our network model is designed for a rather general and high-level type of analysis
and omits operational details at the physical and the collaborative level. The purpose
is not to derive explicit action points for decision makers to reduce vulnerability, for
instance related to collaboration network design or information link choice, but to
provide a general understanding of the relation between collaboration and physical
transport and the concomitant vulnerabilities. Findings apply to a wide range of
different collaborative transport networks, but are subject to a number of modelling
assumptions, which are discussed in the following.

The model is limited to a single type of collaboration links, i.e. collaborations are
bilateral and there is no distinction in terms of system impact or disruption risk. In
reality, carriers could as well form multilateral alliances, which in our model could
be represented by bilateral collaborations between all parties involved. However, dis-
ruption in the collaboration layer in the presence of alliances might follow a different
mechanism and have different impact compared to what our modeling dictates. For
the focus on system vulnerability to collaborations, it is not necessary to make a
sophisticated analysis of the value and impact of different types and complexities of
collaborations. A basic rule for what a collaboration entails in terms of the capabil-
ity to provide joint transport routes, and a plausible mechanism for selecting links
to generate the collaboration network, are sufficient to get a meaningful mapping
between transport and collaboration layers.

Further assumptions are made on the type and the impact of disruptions at the
collaborative level and the subsequent failure of collaborations. We assume that dis-
ruptions are triggered at individual carriers, i.e. disruptions occur at the nodes in the
collaboration layer. The rationale behind this assumption is that most disruptions
that lead to a collaboration failure, including false data/cyber-induced disruptions
and strategic misalignments, emanate from information systems at (carrier) orga-
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nizations. The type of disruption with respect to cause or duration is not further
specified in order to ensure generality of the model. Regarding the impact of a dis-
ruption, there is a distinction between physical operations of a carrier, which in case
of disruption might be unaffected such as in the CMA CGM ransomware attack, and
its collaborations, which are prone to failure. While facing a disruption, carriers’ first
priority is to protect their own operations, whereas external links might even be cut
deliberately to protect the own operations or prevent a disruption from spreading.
Therefore, the consequences of disruption at a carrier node in the collaboration layer
are modeled by the loss of all collaboration links of the respective carrier, i.e. the
capability to offer transport chains involving other carriers, while the transport ser-
vices of the carrier remain unharmed. In reality, physical operations of the affected
carrier can be disrupted as well, as shown by the (Not)Petya case. Therefore, our
assumption is plausible but rather conservative in terms of disruption impact. Lastly,
disruption is assumed not to propagate through the collaboration network. In the
case of cyber attack, it would be reasonable to assume that disruption spreads in the
network, so this should be considered for future research. Incorporating disruption
propagation would even more emphasize the role of the collaborative structure, so it
is more suited for an analysis of varying collaboration setups and not varying market
structures.

3.2.4 Network definition

Systematically deriving the impact of a specific network characteristic on vulnera-
bility without the need for extensive network data requires a network model, which
plausibly represents real-world networks, but comes with tunable network character-
istics and a suitable evaluation approach. We address this with two random network
classes serving a complementary purpose. First, a probabilistic network class, which
is solely described by a set of parameters without the need for generating actual
networks, is developed. Within certain boundaries of tractability, this network class
allows for an analytical evaluation of the network model and is therefore suitable
to establish general relationships between specific network characteristics and vul-
nerability. Second, a simulation-based network class is developed, featuring realized
networks generated from a random graph process, which induces the specified net-
work characteristics. The simulation-based class is more representative of real-world
collaborative transportation systems, which facilitates verification and generalization
of results to a wider range of networks and associated structural characteristics. Pop-
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ulations of the two random network classes are referred to as probabilistic networks
and realized networks, respectively.

3.2.4.1 Notation

The multi-layer network model G = (GT , GC) consists of two network layers mapping
the dependencies between transport service network and carrier collaborations. The
first layer is a transport network GT = (V T , ET ) with a set V T of transshipment
areas as nodes and a set ET of transport services as edges. In addition to the nodes
v1, v2 ∈ V T it connects, each edge e = (v1, v2, c) ∈ ET is attributed to a carrier c ∈ V C

that operates the service. The same pair of nodes can be served by multiple carriers,
which makes GT a multigraph with parallel edges. The second layer GC = (V C , EC)
describes the collaborations between carriers. The node set is the set of carriers V C .
The set of edges EC maps dyadic collaborations between carriers. The size of the
sets is denoted by NT = ∣V T ∣, MT = ∣ET ∣, NC = ∣V C ∣, and MC = ∣EC ∣.

3.2.4.2 Transport layer

The transport network layer can be interpreted as a backbone transport infrastruc-
ture network, which comes alive through one or more carriers operating services on
it. A realistic random model for collaborative transport networks has to capture
both the structure of the backbone transport infrastructure and the structure of
the individual carrier service networks. There are numerous factors that can influ-
ence the structure of a transport network, e.g. spatial embedding, transport modes,
geopolitical constraints, or the competitive landscape, which leads to a large and
heterogeneous range of network structures. A general characteristic found across
different types of real-world transport networks, e.g. air transport (Guimera et al.,
2005) or public transport networks (Ferber et al., 2009), is the scale-free property,
i.e. a degree distribution following a power law with few high-degree nodes (hubs)
and many low-degree nodes. The structure of the individual carrier networks is a
driver by itself for the overall transport network structure, as the full network is a
composition of the single carrier networks. Carriers usually have a connected service
network, and may also have a scale-free structure, particularly the larger carriers.

In order to accommodate for the most important network features, while keeping
the model simple and general, the transport network is defined as a composition of
individual scale free carrier networks with power-law degree distribution P (k) ∼ k−γ .
The N c ≤ NT nodes of these carrier networks are randomly matched with the NT
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Figure 3.2: The figure visualizes how the individual scale-free carrier networks are com-
posed into an approximately scale-free full transportation network. Networks on the right-
hand side of the figure are drawn as a horizontal line to facilitate visualization. The actual
structures of the networks are more complex as indicated on the left-hand side for the indi-
vidual carrier networks.

nodes of the full transportation layer such that it follows a power-law distribution
P (kc) in terms of the number of times kc a node from a carrier network is matched
with a certain node in the full network, i.e. the number of distinct carriers that
operate a service adjacent to that node. Under the assumption that the degree
distribution of the individual carrier networks is independent of P (kc), i.e. the
carrier network degree of a node is not correlating with the number of distinct carriers
operating from that node kc, the actual degree distribution P (k) of the full network
is also approximately power-law distributed (Sun and Zhuge, 2011).

A random graph process to generate networks satisfying these conditions can easily
be generated for the simulation-based network class by repeatedly using the Barabasi-
Albert model (Barabasi and Albert, 1999). See Figure 3.2 for a visualization and
Appendix 3.B for details. The setup of an analytically tractable probabilistic random
network class is less straightforward. There are limitations in calculating foundational
metrics such as the expected average shortest paths, given that not every path is
feasible depending on the presence of collaborations. Therefore, we resort to Erdos-
Renyi networks G(NT , p) (random network with Poisson distributed degrees) with
NT nodes and the probability p for the existence of an edge between each pair of
nodes. Each carrier c ∈ V C operates a service on each edge e with a probability
pξ

ec (some connections can have services run by multiple carriers, but there is also a
chance that an edge is not served at all), which is defined per carrier and is constant
over all edges, i.e. pξ

c ∶= pξ
eci

for all e ∈ ET and all ci ∈ V C .
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3.2.4.3 Collaboration layer

The structure of the collaboration layer can take on any arbitrary form, but we
propose that such a network will be driven by the structure of the underlying trans-
port network and the positioning of carriers in it. For instance, two carriers whose
transport services ’meet’ at many destinations (adjacent services), are more likely to
establish a collaboration since they can leverage the complementarity of their ser-
vices to extend their transport offering. A collaboration between carriers with no
adjacent services would not add any value to the system. Moreover, there might be
constraints with respect to link setup costs or complexity, so carriers would carefully
select their partners. The choice of collaboration layer structure is a compromise
between accurate representation of reality and the capability of network models to
map this representation, especially for analytical computations.

For the present study, collaboration networks are defined through the existence of a
link between all pairs of carriers that have at least one transshipment point (adja-
cent service) in the transport layer. This results in all transshipments being actually
feasible and paths can be formed as if there were no transshipment restrictions. It is
a neat way to enable an analysis of the full magnitude of vulnerability, while ensur-
ing that the collaboration layer has a meaningful structure resulting from plausible
collaboration links. For the simulation-based network class, which features real-
ized transportation layers, the corresponding collaboration layer is constructed in a
straightforward manner as described above. The probabilistic network class, how-
ever, features probabilistic transport services, which means the existence of adjacent
services between two carriers is also probabilistic. The assumption that there is a
collaboration links between all carriers with adjacent services in the pre-disruption
collaboration network can therefore not be upheld. Instead, a collaboration prob-
ability pκ

c1c2
between two carriers c1 and c2 is introduced to describe the network.

Due to the Erdos-Renyi structure of the physical network, pκ = pκ
c1c2

is a constant
parameter for c1 ≠ c2, while pκ

c1c2
= 1 if c1 = c2. As a result, the collaboration layer

itself is equivalent to an Erdos-Renyi network G(NC , pκ).

3.2.4.4 Dependence between layers - Transshipment constraints

The dependence between layers is defined in Section 3.2.2 and visualized in Figure 3.1.
While collaborations in practice create synergies through enabling otherwise infea-
sible transshipments, their non-existence can also be viewed as constraints, limiting
the set of theoretically possible paths given by the transport service infrastructure.
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For the analysis we use the term transshipment or routing constraints to describe the
gap to a transportation network with unconstrained transshipment. Transshipment
constraints at a hub depend on whether collaborations between the carriers serv-
ing the incoming edges and carriers serving the outgoing edges exist or not. In the
simulation-based network class with realized physical networks and realized collabo-
rative networks, transshipment constraints are deterministic. Operating carriers on
incoming and outgoing routes are explicitly known, which means feasible transship-
ments as well as feasible paths can be explicitly determined. This is not possible if
the network layers are probabilistic, since the feasibility of transshipments becomes
probabilistic as well. Therefore, we translate transshipment constraints into a proba-
bility pθ

e1,e2
representing the occurrence of a feasible transshipment calculated based

on available carriers and their collaborations, i.e. the probability that a pair of ad-
jacent edges e1, e2 can form a consecutive part of a path. Given the assumptions
on physical and collaboration layer structure with constant p and pκ, each potential
transshipment is independent and feasible with a constant probability

pθ = 1 − ∏
cq,cr∈V C

q≠r

(1 − pκpξ
cq

pξ
cr
) ∏

cq,cr∈V C

q=r

(1 − (pξ
cq
)2) (3.1)

The derivation of pθ is found in Appendix 3.A. pθ is very powerful, as it combines
multiple relevant parameters into a single one. It is able to capture both the structure
of the collaboration network and transshipment constraints in a collaborative system,
which facilitates the manipulation of network characteristics in the probabilistic net-
work class. Under the assumption of Erdos-Renyi network layers, the probabilistic
network class can fully be described by G(NT , p, pθ) as pθ is a function of pκ and pξ.
Moreover, the impact of disruption can be expressed through a change in pθ, as will
become apparent in our analysis.

3.3 Model evaluation

3.3.1 Performance measurement

We choose two measures that reflect the impact of collaborative transport in terms
of system performance. The first measure ’Efficiency’ is based on path distance,
which indicates the amount of distance or time it takes to transport freight from
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origin to destination along an intermodal route. Average path distance over all OD
pairs is a very common and basic indicator for the performance of transportation
networks. Especially in intermodal transport, where the collaborative systems aims
to mitigate the need for unimodal truck transport, short transport times are key
to provide a competitive alternative to the fast and flexible trucks. The measure
’Efficiency’ additionally captures network coverage by discounting disconnected OD
pairs, and thereby accounts for another core aim of collaborative transport. The
second measure ’Almost shortest paths’ (asp) is based on path availability. Adher-
ing to deadlines or providing reliable transport services is crucial in many transport
systems, especially in freight transport. Depending on the specifics of the network,
delivering an item on time can be more important than the actual transport time.
Therefore, it is important for a collaborative transport networks to have a transport
offering that ensures high reliability for the delivery. ’Almost shortest paths’ ad-
dresses this through counting the number of alternative shortest or almost shortest
paths. The higher the number of these paths per OD pair, the more flexible and
responsive the system is to disruptions.

The specifics and the novelty of our network model require some methodological ad-
vances in order to be able to evaluate the chosen performance measures. Analyzing
vulnerability comprises the computation of these measures at different stages of dis-
ruption. In our case, different levels of network disintegration through node removal
are examined in the collaboration layer, whereas the impact of disruption on net-
work properties is measured in the physical layer, since transportation performance
is of interest. The impact of the collaboration layer on the physical layer reflects
in the transshipment constraints, which need to be integrated into the evaluation
of performance measures. The probabilistic network class allows for evaluation of
expected vulnerability using an analytical approach, whereas the whole population
of realized networks needs to be evaluated and aggregated in the simulation-based
network class.

3.3.1.1 Path distance (Efficiency)

The average shortest path length ϕsp(G) = 1
N(N−1) ∑ i,j∈V,

d(i,j)<∞
d(i, j) is a very common

metric for single-layer networks G = (V, E), but it is not a very suitable measure
for networks with disconnected node pairs. Omitting disconnected node pairs leads
to very short path lengths in networks with many small fragmented components,
conveying a falsely positive impression of basically dysfunctional networks. Discon-
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nected node pairs are even more likely in networks with transshipment constraints.
Therefore, we resort to a slightly modified version ϕeff(G) = 1

N(N−1)
∣{i,j∈V, d(i,j)<∞}∣

ϕsp(G)
of the ’Efficiency’ measure by Latora and Marchiori (2001), using the reciprocal value
of the shortest paths, which is 0 if d(i, j) = ∞. If, for instance, 60% of OD pairs in
a network are connected, the ’Efficiency’ score will be 40% lower than in a network
with the same average distance, but all OD pairs connected.

Transshipment constraints induced by the collaboration layer GC have a non-trivial
impact on the length of shortest paths in the transportation layer GT , as feasibility of
paths depends on the feasibility of transshipments along the path. This requires an
adjustment of existing methodologies. For realized network populations, calculating
ϕsp

real and ϕeff
real requires a minor adjustment to breadth first search, storing carriers

who operate feasible services on incoming edges from nodes on the previous level, for
each visited node. Transshipment feasibility is assessed between these carriers and
carriers operating a service on outgoing edges.

For probabilistic networks, existing shortest path approximations can be made use of,
but need to be adjusted as transshipment constraints introduce additional stochas-
ticity. A path (e1, ..., ek) formed based on edges from E is only feasible with a
probability of pθ

e1,e2
⋅ ... ⋅ pθ

ek−1,ek
. With decreasing pθ, path lengths generally increase

due to a higher chance of paths being infeasible. The analysis of distances or shortest
paths and their distribution in different types of random network models has received
considerable attention in the literature (Albert and Barabási, 2002; Blondel et al.,
2007; Chung and Lu, 2001; Fronczak et al., 2004; Katzav et al., 2018; Katzav et al.,
2015). Katzav et al. (2015) developed the Recursive Shell Approach (RSA) for the
derivation of the shortest path distribution of Erdos-Renyi graphs G(N, p). RSA is
based on a recursive equation

Fd = Fd−1(1 − p)(N−1)(Fd−2−Fd−1), (3.2)

where Fd describes the probability that a randomly selected node is at a distance
greater than d from the source. Moreover, it is robust to a wide range of average
degrees pN . Robustness to parameter variation is crucial since we want to assess
vulnerability through the impact of failure on average distances, which is expressed
by a change of parameters. Equation (3.2) can be adjusted such that transshipment
constraints expressed by pθ can be captured with moderate additional complexity.
With transshipment constraints, an edge on a path can only be taken with probability
pθ unless it is the first edge in the path (d = 1). Therefore, F0 = 1 and F1 = 1 − p
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remain unchanged in the adjusted recursion formula Fd. Beyond the first edge (d > 1),
the possibility of infeasible transshipments needs to be accounted for. The recursion
formula (3.2) becomes

Fd = Fd−1(1 − ppθ)(N−1)(Fd−2−Fd−1). (3.3)

Equation (3.3) allows the calculation of all fd = Fd−1−Fd representing the probability
that the distance from the source is exactly d, and the average distance for the Erdos-
Renyi network class with transshipment constraints ϕsp

prob can be derived:

ϕsp
prob(N, p, pθ) = ∑

∞
d=1 dfd

∑∞d=1 fd
. (3.4)

The shortest path with unconstrained routing is obtained by setting pθ = 1. The
denominator is needed since ∑∞d=1 fd < 1 if c is below the threshold ln(N) at which
the random network is almost surely connected (Bollobás, 2001). In this case, the
asymptotic value F∞ < 1, 1 − F∞ describes the probability that a node pair is not
connected, and equation (3.4) describes the average shortest path for an arbitrary
node pair given it is in the same connected component. Using this, the ’Efficiency’
ϕeff

prob can be derived by devaluing the networks’ average distance by the level of their
connectivity (1 − F∞):

ϕeff
prob(N, p, pθ) = (1 − F∞)

ϕsp
prob(N, p, pθ)

(3.5)

A full derivation of average distance and ’Efficiency’ in networks with transshipment
constraints as well as an assessment of the accuracy of the approach is found in
Appendix 3.C.

3.3.1.2 Path availability (Almost shortest paths)

We define ’Almost shortest paths’ with notation ϕasp
h as the number of paths of

length at most h units longer than the shortest path in a non-constrained transport
network that are feasible under the given collaboration constellation. Let Πh be the
set of paths between all OD pairs that are at most h units longer than the shortest
path in a non-constrained setup. We denote the basic ASP measure by ϕasp

h = ∣Π′∣,
where Π′ ⊆ Πh is the subset of almost shortest paths that are feasible under the
given collaboration network. ϕasp

h is further refined in order to account for cases,
in which it can be misleading, i.e. a decreasing marginal contribution of additional
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paths between the same OD pair and the level of disjointness of alternative paths are
factored in the score. See Appendix 3.D for details. For simplicity, we set h = 0 for
the rest of this work and define ϕasp ∶= ϕasp

0 . ϕasp can only be computed for realized
networks, but not for probabilistic networks, and we write ϕasp

real.

3.3.2 Disruption and robustness

Disruption is simulated by the removal of nodes (carriers) and their links with other
nodes from the collaboration network. A disrupted carrier can still operate its own
services in the transport network, but loses the ability to offer transshipment connec-
tions with other carriers, i.e. only single-carrier routes are available for this carrier.
A measure adopted from Schneider et al. (2011) is used to quantify vulnerability,
computing the average of an arbitrary performance metric ϕ over every stage of
disruption in a sequential removal of all NC nodes (carriers) in GC :

R = 1
NC + 1

NC

∑
u=0

ϕ(u). (3.6)

Here ϕ(u) describes the score of the performance metric after removal of u nodes. R

is a combined measure averaging different stages of disruption while ensuring compa-
rability of results across different networks. Along the removal of nodes, functionality
drops from its level in an undisrupted network ϕ(0) to the level in a system without
any collaboration and no feasible multi-carrier paths ϕ(NC). Equation (3.6) can be
applied to all variants of functionality metrics efficiency ϕsp, ϕeff , and ϕasp. We use
the notation Reff and Rasp accordingly. Disruption mechanisms differ by the order
by which carriers (nodes in the collaboration network and their links with other car-
riers) are removed. The order of node removal has a strong impact on R, since not
all carriers have the same relevance for the functionality of the system. If the order
of node removal is chosen in a purposeful way, e.g. by descending size of carriers
(number services operated) or by number of links with other carriers (degree in the
information layer), functionality decreases more quickly than for random removal,
resulting in lower R.

If the physical layer is a realized network, ϕeff
real and ϕasp

real can simply be recalculated
for each stage of disruption based on the updated collaboration layer to get Reff

real and
Rasp

real. If the physical layer is probabilistic, the change in functionality is driven by a
change in transshipment probability pθ caused by lost collaboration links. If the first
u carriers (c1, ..., cu) are disrupted in the chosen order of removal, their collaboration
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probabilities with all other carriers become zero. This results in pκ
cqcr
= 0 if q ≤ u

or r ≤ u if q ≠ r. The probability that an arbitrary transshipment is feasible after u

carriers have faced disruption becomes

pθ
u(pκ, pξ

c) = 1 − ∏
cq,cr∈V C

q≠r
q,r>u

(1 − pκpξ
cq

pξ
cr
) ∏

cq,cr∈V C

q=r

(1 − (pξ
cq
)2). (3.7)

The efficiency ϕeff
prob(N, p, pθ

u) of the network for a specific pθ
u is given by (4.1). Fol-

lowing (3.6), robustness then calculates as

Reff
prob(p

κ, pξ
c) =

1
NC + 1

NC

∑
u=0

ϕeff
prob(N

T , p, pθ
u(pκ, pξ

c)). (3.8)

See Appendix 3.C for details. Reff
real and Reff

prob are the same metric, they only differ
in how they are computed based on the network class they are applied to. Therefore,
we write Reff .

3.4 Results

3.4.1 Model application

We show the value of our new model through an analysis of the impact of carrier
market structure on the vulnerability to disruption at the collaborative level. Mar-
ket structure, expressed for instance through heterogeneity in cost structure (Defryn
et al., 2016; Padilla Tinoco et al., 2017), bargaining power (Guajardo et al., 2016),
or flow characteristics (Palhazi Cuervo et al., 2016), can play an important role in
collaborative transport. Angeloudis et al. (2016) study the formation of container
service designs in oligopolistic networks, and show that carriers tend to focus on dif-
ferent areas in the network to avoid competition. This leads to higher connectivity
and better overall service level compared to the monopoly case, in which it is more
economical for the monopolist to not serve the full network. Cruijssen et al. (2007a)
find that synergies in joint route planning are moderated by market structure, i.e.
they are highest if there is a large number of small or medium-sized flow-controlling
entities. The influence of market structure on the vulnerability of the system is rarely
studied. For such a study, formation and structure of sub-coalitions and bilateral al-
liances, i.e. the network of collaborations, need to be taken into account. The only
relevant study in this context by Audy et al. (2012) finds that the formation of col-
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laborating groups with sequential bilateral agreements reaches stability in a subgame
perfect Nash equilibrium of individual benefits depending on the underlying business
model. Our multi-layer network model provides a suitable framework to address this
gap, since the 1-to-n mapping between carriers in collaboration network and their
services in the physical network directly represents the distribution of services per
carrier.

We can model different market structures by manipulating the distribution of carrier
service probabilities pξ

c. Zipf’s law, a discrete version of the power law which describes
the relative frequency of the i-th element in a given set of NC ranked elements by
f(i, b, NC) =

1
ib

∑NC

j=1
1

jb

(Newman, 2005), can be used to derive heterogeneous carrier

service probabilities ps
c = f(c, b, NC) (probabilistic network class) as well as the abso-

lute number of services operated per carrier (simulation-based network class). Here
b ≥ 0 is a tunable parameter determining the level of disparity. If b = 0, f(i, b, NC)
describes a uniform distribution representing a balanced market structure, whereas
larger b leads to concentration of services at fewer carriers. Instead of pθ(pκ, pξ

c) and
R(pκ, pξ

c) we can write pθ(pκ, b) and R(pκ, b) as the service probabilities pξ
c can be

fully expressed by b, which is our main variable of interest.

Results are divided in four parts. First, two drivers of vulnerability, collaboration
dependence and susceptibility, are identified and assessed in detail by observing the
decay curve of system functionality for different market structures as nodes/carriers
are disrupted one by one, and dissecting the two drivers under variation of carrier size
disparity. Second, the general relationship between market structure and vulnerabil-
ity under targeted and random disruption is established for the probabilistic network
class and the results are validated using network instances generated from this class.
Third, findings are verified in more transport-related setups, using realized network
populations from the simulation-based network class, and applying a different mea-
sure that better captures the functionality criteria in transport networks. Fourth, the
findings and their contribution are positioned within the existing body of knowledge.
We use the word vulnerability when referring to the concept that is studied, whereas
robustness is used to describe the measure R, which is used to quantify vulnerability.
High vulnerability corresponds with a low robustness score.

3.4.2 Dissecting the role of market structure

Synergies in joint route planning are moderated by the market structure of carri-
ers, i.e. they are highest if there is a large number of small or medium-sized flow-
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controlling entities (Cruijssen et al., 2007a). However, the obvious conclusion that
systems become more vulnerable the more they are distributed would be myopic.
Vulnerability is not only about the potential magnitude of functionality loss rep-
resented by the difference in functionality between a fully-collaborative and a non-
collaborative scenario, but also about susceptibility to disruption, i.e. to what extent
can certain types of disruption exploit the dependence on collaboration and realize a
functionality loss. Susceptibility to random and targeted disruption in a complex net-
work depends on the distribution of node criticality. For instance, networks with few
dominating nodes, corresponding with a centralized market structure in collaborative
transport, are highly susceptible to targeted disruption (Albert et al., 2000).

In Figure 3.3, we illustrate how collaboration dependence and susceptibility depend
on a system’s market structure. The average decay of system functionality is pre-
sented as the collaboration network is dismantled node-by-node for three exemplary
network parameter configurations: Low (Zipf law parameter b = 0), medium (b = 0.6),
and high (b = 1.2) carrier size disparity. Under targeted disruption by carrier size
(number of services operated) (Figure 3.3(a)), the network with high disparity faces
a steep decay of functionality after the first few nodes are disrupted. However, even
after full removal, it maintains decent functionality higher than that of the other two
networks. The network with fully balanced carrier sizes (b = 0) faces a flatter decay
curve, but is a lot more impacted at full removal than the high disparity network.
The medium disparity group gets the worst of both worlds and therefore comes out
with the lowest robustness score.

Figure 3.3 shows that two different effects emerge as market structure is varied,
having a contrary impact on collaboration dependence and susceptibility. If there
is high carrier size disparity, the presence of one or few dominant carriers decreases
the dependence on collaboration as the big carriers can serve a large share of paths
by themselves. As a result, the total magnitude of disruption of information links
decreases with increasing carrier size disparity. However, the more a number of
carriers stands out from the rest, the easier they can be identified as critical players
for a targeted disruption, fostering susceptibility. With number of services being a
good indicator of a carrier’s criticality, higher carrier size disparity leads to increased
effectiveness of targeted disruptions. If all carriers have similar size, the network
is highly dependent on carrier collaboration, but not susceptible as targets for a
disruption are hard to identify.
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(a) ϕeff under targeted disruption (b) ϕeff under random disruption

Figure 3.3: The figure shows the average decay curve under node removal of three con-
figurations of the random network class G(200, 0.05, pθ

) (NC
= 20, pκ

= 0.8) with different
market structure (carrier size disparity) under targeted disruption by carrier size (a) and
random disruption (b). (a) Network 3 (b = 1.2, dotted line) experiences a heavy decay after
removing the first few nodes, but stabilizes at a high level without further losses very early.
Network 1 (b = 0.0), permanent line) has a flat decay but goes down to a much lower path
availability level than network 3. Network 2 (b = 0.6, dashed line) has both steep decay and
low outcome level at full disruption. (b) All networks follow a similar curve, higher b leads
to less steep decay.
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(a) Targeted disruption (carrier size) (b) Random disruption

Figure 3.4: The figure shows collaboration dependence and susceptibility of the proba-
bilistic network class (same parameters as in Fig. 3.3) in relation to their market structure
under targeted disruption by carrier size (a) and random disruption (b). Dependence on
carrier interaction is quantified by the difference between undisrupted functionality and the
functionality after full dismantling of the information network ϕ(0) − ϕ(NC

). It indicates
the dependence of a network to have functioning carrier interactions by quantifying the loss
in case all collaborations failed. Susceptibility is quantified by 1 − R−ϕ(NC)

ϕ(0)−ϕ(NC) . It describes
the relative surface of the base rectangle with height R − ϕ(0) compared to the base rect-
angle with height ϕ(NC

) − ϕ(0). The smaller this relative surface, the more efficient is the
disruption as its full magnitude is reached quicker. We take the complement of this value
to get a measure of susceptibility.
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This is quantitatively confirmed in Figure 3.4, which shows the contrary effects of
varying market structure on the two drivers of vulnerability under targeted disrup-
tion, and visually dissected in Fig. 3.5. The figures also indicate why this effect
only shows under targeted disruption. While collaboration dependence is purely de-
fined by the market structure (direct effect), susceptibility additionally depends on
the order of node removal (indirect effect), i.e. to what extent the heterogeneity in
carrier criticality induced by market structure is exploited in the disruption strategy.
If the order is chosen randomly, susceptibility becomes much less sensitive to market
structure. Carrier criticality is not only influenced by market structure, but also by
other aspects such as the structure of the collaboration layer, which is not varied in
this study. However, since collaborations usually emerge based on the positioning
of the carrier’s services in the physical network, the role of collaboration network
structure is expected to correlate strongly with the role of market structure.

Figure 3.5: Direct and indirect effect of carrier market structure on vulnerability against
disruption at the collaborative level. The two effects are contrary under increasing carrier
size disparity.

3.4.3 Vulnerability under variation of market structure

3.4.3.1 Analytical results with probabilistic network class

In the next step, the actual vulnerability, being a synthesized outcome of the two
observed drivers, is analyzed. Figure 3.6 shows the expected robustness Reff(pκ, b)
for b ∈ [0, 1] and NC = 20 carriers with default collaboration probability pκ = 0.8 in
a probabilistic network G(200, 0.01, pθ). Moreover, it shows the results of a Monte-
Carlo simulation with 1000 realizations of G(200, 0.01, pθ) networks with a random
b drawn from a uniform distribution in [0, 1]. The graph shows that under targeted
disruption, the carrier disparity does not have a monotone effect on the vulnerabil-
ity of multi-carrier transport systems, but takes on a U-shape with a minimum at
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(a) Reff under targeted disruption (b) Reff under random disruption

Figure 3.6: The figure shows the robustness Reff
(0.8, b) for a routing constrained network

G(200, 0.01, pθ
) with NC

= 20 carriers. The red line presents the analytical results of
Reff

(0.8, b) under variation of b, whereas the blue dots are the outcome of a Monte Carlo
simulation. Robustness is computed based on (a) targeted disruption by carrier size and
(b) random order of disruption.

intermediate disparity. While centralized setups (high b) with one or few carriers
providing almost all services are most robust to disruption, and fully distributed
setups (low b) with uniformly distributed carrier sizes exhibit decent robustness as
well, intermediate setups (intermediate b) with both larger and smaller carriers are
most vulnerable with a minimum around b = 0.75. In the case of random disruption
(Fig. 3.6 (b)), the result is in turn monotone. Networks are more robust the more
services are concentrated at a small number of carriers. The Monte Carlo outcomes
are seemingly in line with the analytical results, projecting a similar curve despite
considerable variance.

Figure 3.7 shows the shape of the robustness curve (targeted disruption) for different
physical network densities p and collaboration probabilities pκ. The basic shape at
intermediate values is similar for all combinations of parameters. For increasing b,
robustness declines from a medium value until it reaches a minimum. From there, it
increases relatively steeply, and then starts to flatten, converging towards the upper
robustness bound, which is reached if one carrier operates a service on each single
edge. Robustness is generally higher for denser networks (higher p), simply because
there are more options for routing. However, the minimum of Reff is reached at
smaller b for denser networks, around b = 0.5 for p = 0.05 compared to b = 1.4 for
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Figure 3.7: The figure shows the robustness curve Reff (targeted disruption by carrier size)
under variation of market structure (carrier size disparity) for a probabilistic ER network
G(1000, p, pθ

) with p ∈ [0.005, 0.01, 0.05], NC
= 50 carriers, and collaboration probability

pκ
∈ [0.4, 0.8, 1.0].

p = 0.005. As a result, with increasing network density, the range of robust networks
is mainly on the disparate market structure end. The relative sensitivity to market
structure is highest for the medium density p = 0.01 level with Reff . While the
curve is comparably flat for p ∈ [0.005, 0.05], the medium density goes through a
deep valley at around b = 1.1. This shows that especially for non-extreme networks,
p = 0.01 corresponds with an average number of distinct services per node of 10,
the market structure is a real indicator for vulnerability. The lower pκ, the less the
advantage of a fully balanced network over a intermediate network. In networks with
balanced market structure, collaboration is more important than elsewhere, which
is why a low (pre-disruption) level of collaboration between carriers leads to poor
results even before disruption. The gap between networks differing by collaboration
probability pκ declines with increasing b as the collaboration dependence decreases.

3.4.3.2 Results with realized networks from simulation-based network
class

Figure 3.8 shows the robustness results Rasp under the path availability measure
ϕasp of simulations for 1000 generated networks (NT = 150 nodes, MT = 600 edges,
NC = 20 carriers) with varying market structure parameter b under targeted (a) and
random (b) disruption. Despite different network class and different functionality
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(a) Removal by carrier size (b) Random removal

Figure 3.8: (a) The Figure shows the robustness Rasp of 1000 randomly generated networks
(NT

= 150 nodes, MT
= 600 edges, NC

= 20 carriers) with varying market structure ex-
pressed by parameter b of the services operated per carrier. The carriers’ service networks,
the overall service network, and the collaboration network are generated as explained in
Section 3.2.4. (b) Same figure, but Rasp has been determined using random order of node
removal.

measure, robustness Rasp under variation of b exhibits a similar shape, suggesting
that the discovered relationship between market structure and vulnerability is robust
to transport and carrier network structure. Comparing the simulations in Figures 3.8
and 3.6, the most striking difference is that there is less variance in the simulation
outcomes for medium and small b, indicating that the vulnerability under a given
market structure can be predicted even better with the simulation-based network
class. For large b, the variance in the realized network instances is much wider, due
to networks being more likely to be disconnected if there are few dominant players.
The path availability measure punishes disconnected nodes strongly, which is why
there are some networks with poor functionality in the large b-range.

3.4.4 Positioning in literature

The identification and integrated analysis of the two contrary effects of market struc-
ture constitutes an important addition to the existing body of knowledge in collabo-
rative transport. Cardillo et al. (2013b) find that if collaboration for sharing routes
fails or is not functional (no collaboration in place), the network is much more vul-
nerable to physical disruption. Our results indicate that this physical vulnerability
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becomes real if the network can be disrupted effectively at the collaborative level
(disparate distribution of carrier criticality), and it can be amplified if the network is
very dependent on collaboration. Regarding the role of market structure, Cruijssen
et al. (2007a) show that synergies in joint route planning are highest if there is a large
number of small or medium-sized flow-controlling entities. Using populations of ran-
dom networks instead of constructed benchmark cases, our study reproduces their
finding that potential synergies of collaborative transport (performance difference
between no collaboration and collaboration) are highest with many small/medium
companies. However, The potential loss is also very high due to a high dependence
on collaboration, especially since carriers tend to put their service focus on differ-
ent areas in the network to avoid competition (Angeloudis et al., 2016). Moreover,
the actual composition of small and medium players needs to be assessed in a more
nuanced way. If it is close to a uniform size distribution, the network cannot be dis-
rupted in an effective way, but if there are some medium and some small companies,
the system is vulnerable to targeted disruption.

3.5 Conclusion

While the great potential of collaboration between carriers in transport systems to
enable efficient use of decentral transport resources is well known and undisputed
(Cruijssen et al., 2007b), this paper identified the need to also take a perspective
on the vulnerabilities induced by collaboration. This study aimed to establish an
understanding of collaborative transport as a complex interdependent systems with
a collaboration layer and a physical layer, which interact within themselves, but
also with each other. Synergies and vulnerabilities of bilateral collaborations and
the functionality of physical transport should not only be considered on an isolated
basis, but implications of changes or disruptions needed to be assessed from a system
perspective as well.

The research objective has been approached by developing a new model employ-
ing the science of complex multi-layer networks to map the complex constellations
at the physical transport and at the collaborative level. The model is inspired by
existing multi-layer network models used to study cyber-physical systems, but has
been adjusted for the transportation-specific interdependence between network lay-
ers. Compared to existing models for transportation analysis, the model enables
an integrated analysis of synergies and vulnerabilities at large scale. A useful tool
has emerged for the analysis of networks with decentral control of flow on edges,
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which can be used for various problems in the field of collaborative transport with
little adjustment. We used it to show that market structure represented by carrier
size disparity has a non-trivial impact on the vulnerability of a transport network
to targeted disruption at the collaborative level, see Figure 3.6. Networks are most
vulnerable if they have intermediate disparity in carrier sizes, i.e. carriers are overall
similarly sized, but there is some heterogeneity with a moderate gap between few
larger and many smaller carriers. As a result, the robustness curve is not monotone,
but has a minimum at intermediate disparity levels. Networks with perfectly homo-
geneous carrier sizes exhibit medium to high levels of robustness and highly disparate
networks exhibit the highest robustness.

The study sets the ground for future interesting research exploring the interdepen-
dence between collaboration and transport networks as well as determinants influ-
encing the vulnerability induced by it. This can include a refinement of the model,
for instance by incorporating transshipment operations at the physical level as well
as transshipment operators at the collaborative level. On the evaluation side, dif-
ferent structures of the collaboration layer can be tested to analyze the effect of
limitations regarding the establishing of collaborations or to test the role of different
competitive setups. This would enhance the understanding of the interplay between
physical and collaboration layer, which is currently only analyzed by varying the
physical layer. Moreover, the disruption mechanism could be enhanced incorporat-
ing the risk of spreading and cascading disruption, which would be a step towards
a better understanding of the impact of cyber attacks, such as the 2017 (Not)Petya
hack. All these changes are relatively easy to implement with a simulation-based
network class, whereas the applicability to probabilistic networks is less trivial. A
methodological contribution can further be provided by extending the applicability of
the analytical model variant (probabilistic network class) to networks with arbitrary
degree distributions as well as different disruption types and layer mappings.

Our findings will become increasingly relevant in a world of transportation that is
becoming evermore interconnected through information technology. New visions of
transportation such as synchromodal transport or the Physical Internet are heavily
dependent on close collaboration between carriers in order to be realized. Moreover,
these visions require strong technological integration, including the sharing of large
amounts of data and the usage of sophisticated technologies such as sensor technology
or smart contracts. It is crucial to understand the vulnerabilities that come with these
developments.
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Appendix

3.A Analytical network model formulation - De-
tails

The model is capable of handling non-uniform distributions of collaboration proba-
bilities. For instance, two large carriers could be more likely to set up a collaboration
link since they tend to have more adjacent services in the physical network, hence
pκ

c1c2
would correlate with the two carrier sizes, i.e. pκ

c1c2
= f(c1, b, 0)f(c2, b, 0).

However, the structure of the collaboration network is not a variable tested in this
research, thus pκ is chosen to be a constant parameter.

Derivation of transshipment probability pθ

Using pξ and pκ, the transshipment probability pθ can be derived. Let Te1e2 be a
binary random variable, which is 1 if a transshipment between e1 and e2 is feasible,
and 0 otherwise. A transshipment is feasible, if there is at least one feasible (collabo-
rating or same carrier) pair of carriers operating on the two edges. Let Te1e2c1c2 be a
binary random variable indicating if a transshipment from e1 to e2 is feasible and it
is enabled specifically by c1 operating on e1, c2 operating on e2, and c1 collaborating
with c2. The probability of Te1e2 writes as

P (Te1e2 = 1) = P ( ∑
c1,c2∈V C

Te1e2c1c2 > 0) (3.A.1)

= 1 − P ( ∑
c1,c2∈V C

Te1e2c1c2 = 0) (3.A.2)

= 1 − ∏
c1,c2∈V C

(1 − pκ
c1c2

pξ
e1c1

pξ
e2c2
). (3.A.3)

Since all edges are independent, all pairs of edges are equal and we can write P (Te1e2 =
1) =∶ pθ. Plugging in the assumption that all pκ except pκ

cici
= 1 are equal, and using

Zipf’s law ps
ci
=

1
ib

∑NC

j=1
1

jb

to generate a distribution of services per carrier for a set of

carriers V C = {c1, ..., cNC} ordered by size, we get
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pθ = 1 − ∏
cq,cr∈V C

q≠r

(1 − pκpξ
cq

pξ
cr
) ∏

cq,cr∈V C

q=r

(1 − (pξ
cq
)2) (3.A.4)

Zipf law= 1 − ∏
cq,cr∈V C

q≠r

(1 − pκ

1
(qr)b

(∑NC

j=1
1
jb )2
) ∏

cq,cr∈V C

q=r

(1 −
1

q2b

(∑NC

j=1
1
jb )2
). (3.A.5)

Parameter b of the Zipf law indicates how concentrated services are (market struc-
ture).

3.B Simulation network generation - Details

Simulations allow for the analysis of more realistic representations of collaborative
transport networks as they are less constrained by the boundaries of tractability and
networks can be generated with the desired characteristics of CTNs. The biggest
difference to the networks in the analytical part is that carriers’ individual service
networks are connected and exhibit a scale-free structure.

First, the size of carriers is determined in the same way as for the analytical part
using Zipf’s law f(i, b, NC) =

1
ib

∑NC

j=1
1

jb

. Then for each of the NC carrier’s an individual

service network is generated using the Barabasi-Albert model (Barabasi and Albert,
1999) for scale-free networks with parameters for the size given by the carrier’s allo-
cated share of the predefined total number of services in the network

The full transportation network is then assembled by assigning a weight to each of
the N nodes, and randomly mapping the nodes of the individual networks on the full
network according to the assigned weights. The weights are useful to induce a specific
degree distribution for the overall service network. The desired distribution will only
be achieved approximately as the degree of nodes in the individual network is not
taken into account when making the allocation to the full network. Node weights are
drawn from a power law distribution to also give the full network an approximately
scale-free structure and generate a network that resembles real-world transportation
networks.

The collaboration networks are generated by establishing a collaboration link between
all pairs of carriers that have at least one transshipment point (adjacent service) in
the transport layer. This results in all theoretically possible transshipments being
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actually feasible as long as there is no disruption, i.e. all paths can be formed as if
there were no transshipment restrictions of carriers. This is a neat way to enable an
analysis of the full magnitude of vulnerability, while ensuring that the collaboration
layer has a meaningful structure resulting from plausible collaboration links.

There are numerous alternative choices for collaboration network generation. For
instance, setup constraints could be introduced by turning the presented mechanism
into a threshold rule, placing a link between carriers if the number of touch points
(adjacent services) between the two carriers in the transport network is larger than
a threshold k. The larger k becomes, the more sparse is the information network.
Moreover, a budget of collaboration links (total or per carrier) could be introduced,
aiming at finding system-optimal or emerging constellations under different levels of
carrier rationality and information availability. All these mechanisms have in com-
mon that they do not provide full physical functionality at the initial stage before
disruption, making the question of vulnerability mainly one of the initial function-
ality and thereby obfuscating the general role of market structure under disruption.
Other alternative mechanisms such as random selection of collaboration links or a
fully connected collaboration layer are not really plausible since they contain many
links that do not add any value to the transportation links. In practice, such links
could exist for instance if have establish collaboration that are not directly transport
related, e.g. for knowledge sharing. Even though such collaborations are also subject
to a risk of disruption and can indirectly hamper physical transportation, they are
out of scope. Nevertheless, the choice of collaboration network mechanism does have
an impact on the results, but it is not critical to show the dependence between the
layers and the role of market structure, as discussed in Section 4.4.

3.C Efficiency in ER networks with transshipment
constraints

Derivation of shortest paths and efficiency

The analysis of distances or shortest paths and their distribution in different types
of random network models has received considerable attention in literature (Albert
and Barabási, 2002; Blondel et al., 2007; Chung and Lu, 2001; Fronczak et al., 2004;
Katzav et al., 2018; Katzav et al., 2015). The models by Fronczak et al. (2004),
Blondel et al. (2007), and Katzav et al. (2015) provide analytical approaches to
approximate the distribution of distances in Erdos-Renyi graphs G(N, p). Fronczak
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et al. (2004) provide a closed form equation for the average shortest path length
l = ln(N)−γ

ln(pN) + 0.5, which is though quite inaccurate for small (c < 2) and very large (c
close to N) values of the parameter c = pN , as shown by Blondel et al. (2007). The
definition of c is exclusive to this section of the Appendix. c has a different meaning
in the rest of the paper. Blondel et al. (2007) and Katzav et al. (2015) developed
a recursive equation for the derivation of the shortest path distribution of G(N, p),
which is robust to a much wider range of c. Robustness to parameter variation is
crucial since we want to assess vulnerability through the impact of failure on average
distances, which is expressed by a change of parameters.

All of these approaches can be adjusted such that routing constraints expressed by
a constant pθ can be captured with moderate additional complexity. We will show
this on the example of the Recursive Shell Approach (RSA) by Katzav et al. (2015),
which is almost equivalent to the approach by Blondel et al. (2007), except that the
case of a random node pair being the same node twice with distance 0 is excluded.
The definition of average shortest paths usually requires origin and destination to be
different. The RSA approach considers an arbitrary but fixed source node s ∈ V and
analyzes the shell structure around it. Let Nd describe the number of nodes that
are at distance larger than d from the source s, and Nd the number of nodes with
exact distance d from s with N0 = 1 and Nd = Nd−1 −Nd. For an arbitrary d, Nd can
be described by the share of the remaining nodes Nd−1 (nodes that are not within
distance d − 1), which is connected to at least one node in Nd−1, hence

Nd = Nd−1(1 − (1 − p)Nd−1). (3.C.1)

This can be reformulated as

Nd = Nd−1(1 − p)Nd−2−Nd−1 . (3.C.2)

At d = 0, all nodes but s are in N0 = N − 1, and at d = 1, all nodes that are not s or
neighbours of s are in N1 = (N − 1)(1 − p). In order to transfer eq. (3.C.2) into a
probability distribution, we define the probability Fd that a randomly selected node
is at a distance greater than d from the source, and fd = Fd−1−Fd the probability that
the distance is exactly d. F0 = 1 since distances between same nodes are excluded,
and F1 = 1− p representing the share of nodes that are not directly connected to the
source. The relation between Nd (absolute number of nodes) and Fd (probability)
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is expressed by Nd = (N − 1)Fd. N − 1 is chosen as factor instead of N in order to
exclude the source s. Plugging this in eq. (3.C.2) yields

Fd = Fd−1(1 − p)(N−1)(Fd−2−Fd−1) (3.C.3)

With routing constraints, an edge on a path can only be taken with probability pθ

unless it is the first edge in the path. Therefore, F ′0 = 1 and F ′1 = 1 − p remain
unchanged in the adjusted recursion formula F ′d. For d > 1 routing constraints apply
and the possibility that the random node is connected by a path to the source, but the
connection is infeasible needs to be accounted for. The probability of being connected
by a direct feasible link to at least one node in Nd−1 becomes 1−(1−ppθ)Nd−1 , which
affects equation (3.C.1), and as a result thereof also equations (3.C.2) and (3.C.3).
The recursion formula (3.C.3) becomes

Fd = Fd−1(1 − ppθ)(N−1)(Fd−2−Fd−1). (3.C.4)

In theory, pθ also depends on d, as with growing d, a random node in Nd could be
connected to more than one node in Nd−1. Multiple incoming links that are part of a
shortest path increase the chance of a feasible transshipment to an adjacent link to a
node in Nd+1. We analyzed the evolution of pθ with d and found that the impact on
the result is negligible even for small networks, therefore it is omitted. The recursive
equations with (3.C.4) and without (3.C.3) routing constraints allow the calculation
of all fd as well as the average shortest path length between arbitrary pairs of nodes
ϕsp(N, p, pθ):

ϕsp(N, p, pθ) = ∑
∞
d=1 dfd

∑∞d=1 fd
(3.C.5)

The shortest path with unconstrained routing is obtained by setting pθ = 1. The
denominator is needed because ∑∞d=1 fd < 1 if c is below the threshold ln(N) at which
the random network is almost surely connected (Bollobás, 2001). In this case, the
asymptotic value F∞ < 1, 1 − F∞ describes the probability that a node pair is not
connected, and eq. (3.C.5) describes the average shortest path for an arbitrary node
pair given it is in the same connected component. In finite networks paths cannot
be longer than N − 1 edges in a network with N nodes, therefore F∞ = FN−1 and
the sum in (3.C.5) stops at d = N − 1. If routing constraints are in place, shortest
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paths could theoretically be longer than N −1 edges if nodes are revisited in order to
enable transshipment to a constrained edge. Practically this is a very hypothetical
scenario and can be neglected.

As mentioned before, the average shortest path ϕsp(N, p, pθ) is not a very suitable
measure for the functionality of disconnected networks. If c < ln(N), the network
is not expected to be connected and if c < 1, the random network even consists of
small fragmented components (Bollobás, 2001), resulting in d(i, j) =∞ for most node
pairs. The transition of ϕsp into ϕeff is made as follows:

ϕeff(N, p, pθ) = 1
N(N − 1) ∑

i,j∣d(i,j)<∞

1
ϕsp(N, p, pθ)

(3.C.6)

= 1
N(N − 1)

(1 − F∞)N(N − 1)
ϕsp(N, p, pθ)

(3.C.7)

= (1 − F∞)
ϕsp(N, p, pθ)

(3.C.8)

With this measure, networks have their average shortest path devalued by the level
of their connectivity (1 − F∞), which is very low for networks with c < 1.

Accuracy

We test the accuracies of the two approaches by Katzav et al. (2015) RSA, RPA,
and the approach by Blondel et al. (2007) by comparing them to simulation results.
See figures (3.C.1), (3.C.2), (3.C.3), (3.C.4), and (3.C.5) for the results. In the
unconstrained case, the biggest deviations from the results are found at c = 1, which
is the threshold for the formation of a giant component. Much of the deviation can
be traced back to the use of the expected value for calculating Nd+1 from Nd and Nd,
instead of using the actual distribution. For very small c, the distribution is centered
at close to 0, since most nodes are not connected. The expected value is close to 0
as well. For large c, almost all nodes are connected, hence the distribution of Nd+1

is centered around its expected value. Around c = 1, there are large components,
but many node pairs are still not connected. The distribution of Nd+1 has a peak
at 0 for the disconnected share and a second peak at the expected number of nodes
if only connected pairs were considered. The expected value is therefore not very
representative for the distribution.
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(a) Average shortest path -
unrestricted

(b) Efficiency - unrestricted

Figure 3.C.1: The Figures shows average shortest path ϕsp
(N, p, 1) and efficiency

ϕeff
(N, p, 1) for parameters c ∈ [0, 10] and N = 300. Calculations are made using three

different analytical methods (RPA, RSA, Blondel) as well as simulations. The approaches
are quite inaccurate in the range c ∈ [1, 2] as pointed out by the authors, with RPA being
the farthest off simulations results. The values for efficiency (b) are more accurately than
those for average shortest path (a).

(a) pθ
= 0.05 (b) pθ

= 0.1 (c) pθ
= 0.5

Figure 3.C.2: The Figures shows average shortest path ϕsp
(N, p, pθ

) for parameters c ∈
[0, 10] and N = 300 with constrained routing for different values of pθ. All methods show
solid accuracy for most c except there is one transition point corresponding with c = 1 in
the unrestricted case where the analytical approaches deviate from the simulations. RSA
and Blondel can cope with this transition much better than RPA.
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(a) c = 0.5 (b) c = 1 (c) c = 10

Figure 3.C.3: The Figures shows average shortest path ϕsp
(N, p, pθ

) for transshipment
probability pθ

∈ [0, 1] and N = 300 with constrained routing for different values of c. For
small (a) and large c (c), the variation of pθ seems not to have a large impact on the accuracy
of the model. At c = 1 (b), which is the transition point in the unrestricted model, accuracy
is only good for small and medium pθ. As pθ approaches 1, the model converges to the
unrestricted case.

(a) pθ
= 0.05 (b) pθ

= 0.1 (c) pθ
= 0.5

Figure 3.C.4: The Figures shows efficiency ϕeff
(N, p, pθ

) for parameters c ∈ [0, 10] and
N = 300 with constrained routing for different values of pθ. All methods show high accuracy
for all c, especially RSA and Blondel.
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(a) c = 0.5 (b) c = 1 (c) c = 10

Figure 3.C.5: The Figures shows efficiency ϕeff
(N, p, pθ

) for transshipment probability
pθ
∈ [0, 1] and N = 300 with constrained routing for different values of c. RPA seems to

show the best accuracy for efficiency. Blondel deviates before and RPA after the transition
point.

Surprisingly, the modified approaches incorporating routing constraints are more
accurate than the original versions. An explanation is found in the fact that a
network with routing constraint pθ can be compared to a network with expected
degree c for the source node and cpθ for all other nodes. At d = 0 the expected value
for Nd+1 is very accurate since N0 and N0 are exactly known. For d > 1, the real c

is much closer to zero and therefore well represented by the expected value for Nd+1

as explained above. The modified RSA approach provides the most accurate results
for almost all parameters and is therefore used for subsequent analysis.

3.D Detailed definition of ’Almost shortest path’
measure

Let Πh be the set of paths between all OD pairs that are at most h units longer than
the shortest path in a non-constrained setup. We denote the basic asp measure by
ϕasp = ∣Π′∣, where Π′ ⊆ Πh is the subset of almost shortest paths that are feasible
under the given collaboration network.

The asp measure is further refined in order to account for cases, in which it can be
misleading. First, the score can be biased if there is a disproportionately high number
of almost shortest paths for a small number of OD pairs while many OD pairs are
not even connected. An even distribution of almost shortest paths across OD pairs
is preferred. Therefore, the marginal contribution to the asp score diminishes with
increasing number of paths for a certain OD pair. Second, not every path is equally
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relevant for a dynamic transport system. Paths that use largely the same services to
serve an OD pair add less value than a completely disjoint path, since in case of failure
of services, multiple overlapping paths can be eliminated at once, while disjoint paths
have no correlated impact. This is dealt with by weighting the value of a path by
its level of disjointness from other paths serving the same OD pair. The decreasing
marginal contribution of additional paths on the same OD pair is accounted for by the
calculation ϕasp

od = ∑h=1,...,∣Π′
od
∣ x

h−1, where Π′od is the set of feasible almost shortest
paths connecting o and d and x ∈ (0, 1] is a parameter describing how quick the
additional value of more paths is diminishing. We set x = 0.8, which means that an
OD pair with only 1 path will have a score of 0.80 = 1, an OD pair with 2 paths
will have a score of 0.80 + 0.81 = 1.8, and so on. Since paths are weighted by their
relevance, i.e. each path π has a relevance rπ, the calculation needs to be slightly
adjusted. Let Wod = ∑π∈Π′

od
rπ, then

ϕasp′

od = ∑
h=1,...,⌊Wod⌋

xh−1 + (Wod − ⌊Wod⌋)x⌈Wod⌉. (3.D.1)

The full score adjusted for diminishing additional path value and path relevance is
calculated as

ϕasp′ = ∑
o,d∈V T

A′od. (3.D.2)

The relevance of a path rπ is determined by how disjoint the services of the path are
from those used for other paths on the same OD pair. Let EP (Πh, e) be the number
of times the service e = (v1, v2, c) occurs over all paths π ∈ Πh. A path π is described
by the set of services eπ that jointly form the path. We define the relevance of a path
π ∈ Π′od as

rπ =
∣eπ ∣

∑e∈eπ
EP (Π′od, e)

. (3.D.3)
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A path that uses exclusively services that are not used for other paths serving the
same OD pair will have relevance rπ = 1. A path, whose services are all used for
exactly one other path on the same OD connection exhibits rπ = 0.5.
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4.1 Introduction

4.1.1 Motivation

Collaboration and information integration between actors in decentrally operated
transportation systems is a key enabler to create synergies through more efficient
use of existing service infrastructure. Intermodal container transport, for instance,
aims at providing a competitive and more sustainable alternative to truck transport
by using barge and rail services. However, the presence of many small and medium
sized carriers restrains the set of destinations reachable through rail and barge ser-
vices and leads to unfavorable transport routes when carriers provide their services
in isolation. Carriers can cope with this by combining their individual transport
offerings through collaborative provision of services. This includes facilitating in-
tegrated booking, transshipment between consecutive transport services, and joint
planning of transport services to avoid unnecessary waiting times between arrivals
and departures of consecutive transport services. When such collaborative arrange-
ments are made, the performance of intermodal transport improves. Indeed, when
more (joint) transport routes are offered, there are more options to transport freight
efficiently, frequently and timely between origins and destinations. As a result, inter-
modal transport becomes more competitive as compared to direct truck transport.
Other decentrally operated transportation systems, e.g. in air passenger or public
transport, experience similar benefits through collaboration and information integra-
tion between carriers. The more carriers are getting engaged in collaboration, the
more synergies of integration emerge. Ultimately, transport systems become more
efficient with flexible routing and shorter average transport times (Cardillo et al.,
2013b).

Despite these benefits, collaboration comes with new and often disregarded threats.
Collaborations are fueled by the exchange of data, since collaborative provision of
services requires close coordination between parties on the arrangement of transship-
ments, synchronization of capacities for integrated booking, and service disruption
handling amongst others (Buijs and Wortmann, 2014). For instance, while coordi-
nating intermodal transport chains, intermodal carriers depend on each other for the
quality of exchanged information on service schedules, bookings, available capacities,
transshipment plannings, and so on. If carriers fail to provide their partners and in-
volved terminals with the required data or if the data is of poor quality, e.g. resulting
from a cybersecurity breach or poor data management, transport chains performance
deteriorates or even collapses. As a consequence, collaborations are at risk of failure,
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e.g. through technical disruption, cyber attacks, or even inter-organizational issues
(Kumar and van Dissel, 1996; Tonn et al., 2019).

More importantly, however, disruption in a carrier’s information system can lead to
subsequent disruption at its partners and partners of partners. For instance, false
data injected by a malicious attack or unintended errors, or missing data resulting
from an information system failure does not only hamper the operations of the at-
tacked carrier, but also that of its partners if the false/missing data is shared and
needed to maintain collaborative operations (Wang et al., 2019). Even an organiza-
tional conflict causing the failure of a collaboration for strategic or commercial reasons
can have implications for the carriers’ other collaborations as there can be second
order interdependencies, i.e. a carrier could only see the benefits in a partnership as
long as that partner has a partnership with another strategically important carrier.
The risk of propagation indicates that carriers are not only exposed to their own risk
of disruption, but also to that of their partners. Research in the field of epidemiology
even suggests that the magnitude of the latter increases with the number of partners,
i.e. a higher number of connections increases the risk of infectious disruption turning
into a cascade disrupting large parts of a population (Newman, 2002). Disruption
at a single carrier can then be a serious threat to an entire cyber-physical systems
(Bagula et al., 2019; Wang et al., 2019).

The vulnerability to cascades of disruption at the collaborative level stands in con-
trast to the supposed benefits of collaboration, and raises the question whether more
collaboration is indeed purely positive as suggested by the potential synergies, or
whether there is a trade-off between synergies and vulnerability. As emerging con-
cepts in transportation such as synchromodal transport or the Physical Internet are
heavily dependent on close collaboration between carriers and lead to transportation
systems being increasingly interconnected by information technology, it is crucial to
understand the trade-offs between synergies and vulnerabilities that come with these
developments.

4.1.2 Aim of research

This research aims to identify a trade-off between synergies and vulnerabilities through
collaboration between carriers in transportation systems. This trade-off shall be
quantified depending on the collaborative connectivity, i.e. the relative quantity
(density) of collaborations.
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The provision of an appropriate model for such an analysis is a challenge. First, the
model needs to capture the complex interdependence between physical transportation
and collaboration from a system perspective. The performance of physical transport
services is not only a result of the network of available transport services, but also of
the collaborative arrangements between the operating carriers. Moreover, the model
needs to capture the impact of changes in the collaborative arrangements, e.g. caused
by disruption. In Chapter 3 we propose a model based on the science of complex
networks that is capable to accomplish that. In particular, they develop a new multi-
layer network model of transportation systems with vertical collaboration between
carriers, who each operate their own proprietary network of transport services. In
this system, carriers have the possibility to establish dyadic collaborations, enabling
them to provide shared sequential transportation chains including transshipments.
Transportation services and collaborations between carriers are represented in a net-
work with two separate network layers. The collaboration layer comprises carriers
as nodes and their dyadic collaborations as edges. The physical layer is defined by
attributed edges representing transportation services associated with the operating
carrier, and nodes representing transshipment points, e.g. ports or inland terminals.

Second, the dynamics of disruption at the collaborative level need to be captured,
i.e. the mechanism of disruption propagation following an initial disruption in the
collaboration layer. While the impact of disruption on transportation performance
is derived from the multi-layer network model, the mechanism how disruption can
propagate between collaborating carriers requires an additional modelling step. We
model this propagation using methods from the field of epidemiology, which provides
a wide range of models for spreading dynamics in networks. Specifically, we use
an SIR (susceptible-infected-recovered) model (Newman, 2002), which is the most
general epidemic model applicable to a wide range of epidemic dynamics including
disruption propagation in collaboration and data exchange networks. For instance,
Bagula et al. (2019) use an SIR model to model propagation of hazards, faults, and
disturbances at the cyber level in IoT enabled networks.

Integrating the two modelling components, the multi-layer network model for col-
laborative transport and the SIR failure propagation model, we are able to conduct
the desired analysis for arbitrary collaborative transport systems under variation of
collaborative connectivity. Both models as well as the coupling between outcome of
failure propagation and network performance are solved analytically for a class of
probabilistic networks. Moreover, a mix of analytical and simulation-based methods
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is used to derive results for collaborative transport network instances that better
represent real-world systems as well as an actual real-world instance generated from
data on intermodal transport services in Europe.

4.1.3 Contribution

Integrating the transportation-collaboration model introduced in Chapter 3 and an
SIR model for failure propagation (Newman, 2002), we provide a model that allows
for analysing the impact of collaboration in transportation systems with respect to
both synergies and vulnerabilities. It is sophisticated enough to capture the complex
performance outcome under a given transportation-collaboration scenario and ad-
justed for the risk of disruption propagation at the collaborative level. At the same
time, it is simple enough to be applied to a large set of random network instances
and allow for the systematic assessment of varying transportation and collaboration
scenarios. Our model constitutes a useful tool to support decisions for potential part-
ners to comprehensively evaluate the impact of their partnership, but also for policy
makers to propose an optimal level of collaborative connectivity balancing synergies
and vulnerability, or to identify preventive measures. The tool can easily be adjusted
to solve related problems and will therefore be useful in future research.

We use our model to study the trade-off between synergies and vulnerabilities in
transportation systems depending on collaborative connectivity. We show that an
increase in the number of collaborations does not have a monotone positive effect on
system performance any more, if performance is adjusted for the risk of disruption
cascades. Instead, there is a connectivity threshold at which performance peaks. At
very low connectivity, the number of neighbours susceptible to disruption propagation
through an infected carrier is very low, leading to little risk of disruption turning into
a cascade. Thus, increasing collaborative connectivity has a strongly positive effect
through synergies. Around the connectivity threshold, system performance reaches
a maximum, as most of the potential synergies are reaped, while the network is
still sufficiently sparse to prevent cascades from disruption propagation. Beyond the
threshold, failure cascades become larger and more likely while the marginal added
synergies are diminishing, leading to a very quick decay back to the performance
that is achieved without any collaboration. The more collaborations are centred
among the largest carriers, the more synergies are realized already at low connectivity,
but also propagation between them is facilitated, leading to a lower connectivity
threshold.
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Figure 4.1: The figure shows the potential consequences of disruption at the collabora-
tive level. Each disruption in the collaboration layer directly reduces the functionality of
the physical layer. Moreover, disruption propagation in the collaboration layer can lead
to further failures, impacting the physical layer additionally. With a certain probability,
disruption propagation turns into a cascade disrupting large parts of the collaboration net-
work, thereby annihilating all synergies of collaboration for the transportation network.
Disruption in the physical network can further be amplified by propagation on the physical
level such as congestion or delay propagation (not considered in this work).

Our findings support the claim that disruption in collaborative transport networks
at the collaborative level is not necessarily an isolated event reducing the trans-
portation functionality, but collaborations form a network, in which disruption can
propagate and amplify the disruption at the physical level, see Figure 4.1. Given the
’infectiousness’ of disruption at the collaborative level, the decision for establishing a
collaboration cannot solely be based on the synergies, but the effect on the cascade
risk through propagation needs to be carefully considered, especially in networks
where large players tend to connect among themselves first.

4.1.4 Outline

The remainder of this paper is organized as follows. The subsequent section com-
prises a review of relevant literature on synergies and vulnerabilities of collaborative
transportation as well as the role of cyber/data failure in cyber-physical systems.
Section 4.3 is dedicated to the methodology. Section 4.4 comprises the results of the
analysis, serving as a basis for the discussion in Section 4.5. Section 4.6 concludes
and provides an outlook for future research.
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4.2 Theoretical background

4.2.1 Collaborative transport

Research on collaborative transport is facing increasing popularity in recent years.
The potential of vertical and horizontal collaborations between carriers to enable
a more efficient use of existing transport resources and thereby contribute to more
sustainable transport (Cruijssen et al., 2007b) is well understood (Pan et al., 2019).
A large number of papers address the creation of synergies through collaborative
planning, e.g. by maximizing fill rates (Cruijssen et al., 2007a), reducing empty runs
(Adenso-Díaz et al., 2014; Ergun et al., 2007; Lin and Ng, 2012), finding optimal
locations to foster participation of carriers Hernández et al. (2011), and optimize
supply network pooling Pan et al. (2013). Potential synergies of collaborative plan-
ning in general are substantial, for instance w.r. to cost synergies (Adenso-Díaz et
al., 2014; Cruijssen et al., 2007a), or carbon footprint reduction (Lin and Ng, 2012).
These results generally describe the potential synergies of collaborative transport,
whereas threats emerging from the increasing integration of players are less in fo-
cus. In fact, these collaborations do not come without complications. Besides the
potential synergies, researchers have also studied conditions for establishing stable
collaborations, e.g. the alignment of side payments in liner shipping (Agarwal and
Ergun, 2010) or truck transportation (Özener et al., 2011), incentivisation schemes
(Houghtalen et al., 2011), organizational readiness (Verstrepen et al., 2009; Zacharia
et al., 2011), or the creation of trust (Pomponi et al., 2015). If collaborations are
not set up the right way, they can be unstable and therefore prone to failure, e.g.
in the case of overcapacity (Giudici et al., 2021). In general, stability depends on a
trade-off between fostering carriers’ participation in collaboration and making them
take system-optimal decisions (Houghtalen et al., 2011)

4.2.2 Data and cyber threats

Data and cyber threats are an important issue in collaborative transport since col-
laborations usually come with agreements on exchanging information or even the
integration of information systems. Technical failure or cyber attacks can lead to
disruption of these interfaces and impact the system functionality (Kumar and van
Dissel, 1996). Insufficient information infrastructure can greatly hamper collabora-
tion, especially in systems with many SMEs, where information infrastructure in-
vestments are generally lower and the need for communication is disproportionately
high (Cruijssen et al., 2007b). However, literature addressing the impact of cyber
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disruption on transport systems is limited, despite cyber incidents affecting trans-
portation infrastructure increasing in quantity and monetary impact (Tonn et al.,
2019). Laszka et al. (2016) and Ezell et al. (2013) find that small attacks to critical
traffic lights can cause heavy disruption across an entire road network. Moreover,
Tam and Jones (2019) provide a framework to classify cyber threats and physical
threats based on the presence of operational technology, information technology, and
human factors.

A larger body of knowledge on cyber disruption is available for general cyber-physical
systems. The general interdependency between cyber and physical level is reviewed
in Rinaldi et al. (2001), Ouyang (2014), and Mohebbi et al. (2020), concluding that
the state of one infrastructure system depends on information transmitted through
the communication infrastructure. Axon et al. (2019) analyze cyber insurance claims
to trace back the propagation of disruption at the physical level induced by cyber
disruption, finding that disruption at the information level in cyber-physical sys-
tems does not only have a direct impact on the physical functionality, but cyber
and data attacks can as well spread at the information level amplifying the overall
impact. Wang et al. (2019) study the interplay between fault propagation in a phys-
ical (power) network and virus propagation in a communication network using an
SIR model for virus propagation (Newman, 2002). They find that communication
networks with scale-free structure are more vulnerable to virus propagation in cyber-
physical systems. Bagula et al. (2019) also use SIR to model propagation of hazards,
faults, and disturbances at the cyber level in IoT enabled networks and propose a
surveillance approach to reconfigure the network after faults are observed. Liu et al.
(2021) provide a measure related to closeness centrality to identify critical nodes in
a cyber-physical system under spreading cyber attacks.

4.2.3 Synthesis

While research on vulnerability at the collaborative level in cyber-physical systems
has gained traction in recent years, there is still a lack of knowledge in the context
of collaborative transport, especially considering the risk of propagation and the
consequences at collaborative and physical level. Not considering the propagation
potential could lead to the illusion that more collaboration is always better, while
missing the fact that higher collaborative connectivity facilitates failure propagation.
In fact there can be an epidemic threshold describing the level of connectivity (or
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transmission probability) at which initial failure leads to a cascade disrupting the
entire network (Moore and Newman, 2000).

It seems reasonable to use similar methods from the science of complex networks
used for general cyber-physical systems to study the issue. However, the interdepen-
dency between collaboration and transport layer is different from the typical power-
communication setup, and therefore results from general cyber-physical systems do
not directly apply (cf. Chapter 3). Propagation models need to be combined with
transport-collaboration models to assess the impact of connectivity on synergies and
vulnerabilities of collaborative integration, which is done by the present study.

4.3 Methodology

4.3.1 Modelling overview and assumptions

Our model to study the effect of collaboration on probability and impact of failure
cascades at the collaborative level is based on the science of complex networks. This
allows us to capture the interdependence between transportation and collaboration
while allowing for the analysis of large sets of network populations to systematically
derive the trade-off between synergies and vulnerability. Using more conventional op-
timization or agent-based methods, the multi-layer mapping between transportation
and collaboration would be difficult to capture and computational effort to analyze
large-scale networks would be large. A qualitative approach could be useful to un-
derstand the dynamics of collaborations and disruption better, but does not allows
for a system-wide comparison of synergies and vulnerabilities.

We take a rather general and high-level perspective on collaborative transport. Oper-
ational details are omitted and performance is observed at system-level. The purpose
is not to derive explicit action points for decision makers to reduce vulnerability, but
to provide a general understanding of the trade-off between synergies and vulnerabil-
ities that arise with increasing collaborative connectivity in transportation. Findings
apply to a wide range of different decentrally operated transport networks, in which
carriers can engage in collaboration. Our domain of application is intermodal trans-
port in the seaport hinterland. Intermodal transport involves the flexible use of
alternative transport modes train and barge, possibly resulting in transport chains
involving multiple transport modes and carriers. Enabling such transport chains
requires vertical collaboration between carriers. The aim of intermodal transport
is to provide more flexible, resilient, and sustainable transport systems with little
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need for truck transport. The core modelling step taken in our work comprises the
integration of two existing network models; the multi-layer network model to map
transport network and collaboration network introduced in Chapter 3, and a model
for propagation of cyber/data disruption in a collaboration network (Newman, 2002).

4.3.1.1 Transportation-collaboration model

The transportation-collaboration model from Chapter 3 combines physical level and
collaborative level of transportation systems in a multi-layer network model with a
transport and a collaboration layer. See their paper for a detailed description of
modeling collaborative transport and the associated assumptions. The physical level
describes the network of physical transportation and transshipment services, and
the carriers that operate these transportation services. The operators involved in
the physical transshipment processes between consecutive transportation services in
a transport chain are not included in the current model set-up. Disruption at the
physical level comprises the unavailability of physical transport services, as a result
of for instance low or high water levels, or (un)planned rail maintenance.

The collaborative level addresses activities beyond the physical movement of goods,
which include non-physical coordination efforts and information exchanges between
involved parties required to enable collaboration. Coordination efforts include, for
instance, sharing of booking and planning information, redistribution of costs and
benefits, tracking of deliveries, and error handling. In intermodal transport, coordi-
nation is necessary between a number of parties, especially truck, train, and barge
carriers, as well as terminal operators. We define a collaboration between two carriers
as a dyadic agreement between two carriers to provide a joint portfolio of transport
routes built from shared transport services on consecutive network legs. Collabo-
rations come at least with basic coordination efforts and information exchanges to
ensure feasibility of transshipment, but can be more advanced. A basic collaboration
could entail sharing of data on schedules and availability capacity on manual request
as well as manual coordination of bookings and compensations between carriers.
More advanced collaborations come with an interface enabling integrated booking of
transportation services involving both carriers at either carrier’s platform or even a
shared interorganizational information system (van Baalen et al., 2008). These sys-
tems can include automated compensation schemes for service sharing and automated
coordination of transshipment with terminal operators.
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In the transportation-collaboration model, the physical level is formalized by a net-
work of transport services (edges) and transshipment points (nodes). Each edge addi-
tionally contains information about the operating carrier of the associated transport
service. The collaborative level and the concomitant coordination efforts are for-
malized through bilateral carrier collaborations mapped in a separate network layer
consisting of carriers as nodes and collaborations as edges. By default, carriers can
only offer routes using their own services, which limits the total available routes to
those operated by a single carrier. However, if two carriers establish a collaboration,
i.e. there is a link between them in the collaboration layer, paths formed in the trans-
port network can include successive services operated by the two carriers connected
through transshipments. Therefore, the set of bilateral collaborative arrangements
determines the set of feasible routes in the transportation network. The more car-
riers are getting engaged in collaboration, the more synergies of integration emerge.
Ultimately, the transport system becomes more efficient with flexible routing and
shorter average transport times (Cardillo et al., 2013b). The multi-layer network
model including the interdependence between transportation and collaboration layer
is visualized in Figure 3.1. A technical description of the transportation-collaboration
model and how it is evaluated with respect to the purposes of this study is provided
in Subsection 4.3.2.1.

4.3.1.2 SIR model for propagation of disruption

The second component of our integrated model is the representation of vulnerability
at the collaborative level. Vulnerabilities in the transportation-collaboration model
are inevitably linked to the synergies that are created through collaboration, as these
synergies are at risk. For instance, while coordinating intermodal transport chains,
intermodal carriers depend on each other for the quality of exchanged information on
service schedules, bookings, available capacities, transshipment plannings, and so on.
If carriers fail to provide their partners and involved terminals with the required data
or if the data is of poor quality, e.g. resulting from a cyber security breach or poor
data management, transport chains performance deteriorates or even collapses. We
formalize disruption by disruption event and disruption propagation. A disruption
event describes an event happening to a carrier at the collaborative level, that leads to
the loss of that carrier’s ability to perform collaborative transportation. Disruption
events are for instance cyber attacks. In the network model, a disruption event
corresponds with the loss of all edges in the collaboration layer attached to the node
associated with the disrupted carrier. According to the transportation-collaboration
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interdependence, this leads to the set of feasible routes at the physical level being
curtailed by routes that involve transshipment between the disrupted carrier and its
collaboration partners. The disrupted carrier can however still offer routes that do
not involve transshipment with other carriers. For the continuation of their own
transport services, carriers are not fully dependent on their information systems or
may have backup procedures for internal communication.

The analysis in Chapter 3 is considering isolated disruption events, whereas in this
work we additionally take into account the probability of disruption propagation.
Disruption propagation describes the case when a disruption event at one carrier
triggers further disruption events at the carrier’s collaboration partners, which is
likely to happen in the case of cyber disruption such as ransomware attacks or false
data injections (Wang et al., 2019). We model disruption propagation dynamics
applying a discrete networked SIR (susceptible-infected-recovered) model (Newman,
2002), which features an initial infection size (share of nodes with disruption event)
and a fixed probability that a disruption event propagates along a link in the collab-
oration network. SIR is commonly used to model the epidemic spread of infectious
diseases, but it is also used for the modeling of other types of spreading entities
such as failure in cyber-physical systems (Bagula et al., 2019; Wang et al., 2019) or
delay propagation in transportation networks (Baspinar and Koyuncu, 2016). An
assessment of the suitability of SIR in our context is provided in Appendix 4.A.

The original discrete SIR model additionally features a period of infection, which is a
number of discrete time steps during which an infected node can transmit disruption
to its neighbours before recovery. Since we are not considering a specific time frame,
parameters of the SIR model are chosen such that disrupted nodes immediately re-
cover after they are ’infectious’ for a single time step. As a result, time steps in the
original SIR correspond with stages of disruption in our context and recovery corre-
sponds with the removal of disrupted nodes from the collaboration network. Instead
of the spreading dynamics over time, our focus of interest is the total magnitude
of disruption at the collaborative level and the resulting impact on performance at
the physical level. Therefore, a marginal initial disruption event at the collabora-
tive level, which represents a cyber incident at a single carrier, is simulated and the
propagation process is observed until it ceases and the network is in a steady state.
We assume that a random disruption will almost certainly happen at some point
over a long time span and the impacts can be long-lasting. Decision makers should
additionally assess how realistic a disruption at the collaborative level is in the first
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place, before assessing the impact of it. If the risk of initial disruption is negligible,
one could opt for higher connectivity than suggested by our model. Vulnerability of
the given transportation-collaboration instance is obtained by measuring the damage
made to the collaboration layer.

The propagation process can have two diametrically opposed outcomes. Depending
on the transportation instance and the propagation parameters, the initial disruption
event can either propagate very little or not at all, or it can cause a cascade disrupting
large parts of the network. If there is no cascade, transportation performance after
disruption is almost at the pre-disruption level. If there is a cascade, transportation
performance drops massively, in the worst case down to a system without any col-
laboration and isolated provision of services by each carrier. The probability of a
disruption turning into a cascade is crucial to the assessment of vulnerability at the
collaborative level. Besides creating synergies in the form of shared transportation
services, increased collaborative connectivity drives the cascade risk of disruption.
By testing the vulnerability of a set of transportation-collaboration instances under
variation of collaborative connectivity, we can identify the threshold connectivity at
which transportation performance is maximized given the trade-off between synergies
and vulnerability.

SIR can be evaluated in various ways, analytically and through simulation (Kiss et
al., 2017). The appropriate approach to evaluate SIR is dependent on the selected
instance of the transportation-collaboration model. In Section 4.3.2.2 we show the
suitable combinations of SIR solver and transportation-collaboration instance for
analyzing the synergy-vulnerability trade-off. Under certain conditions, the threshold
connectivity can be derived analytically (see Section 4.3.3).

4.3.2 Model evaluation

4.3.2.1 Transportation-collaboration model: Instance generation and mea-
surement

The generation of instances for the transportation-collaboration model is driven by
two objectives. On the one hand, instances should be simple in order to be compu-
tationally tractable and ideally allow for an analytical evaluation approach. On the
other hand, instances should be plausible and representative of real-world systems.
In order to cope with these objectives, we present three different network classes for
physical layers and three different network classes for collaboration layers. The differ-
ent network classes come with different levels of analytical tractability and real-world
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proximity. They are a mix of probabilistic network classes, which are not explicitly
generated but only expressed by parameters, and simulation-based network classes,
which are generated following a random graph process inducing the desired charac-
teristics. In addition, a real-world network class generated from data on intermodal
hinterland transport services by rail and barge in Europe is used. Using different
combinations of transport and collaboration network classes, we are able to analyt-
ically establish general insights on the impact of collaborative connectivity on the
risk of failure cascades while verifying the model and ensuring consistency of results
in real-world systems. Populations of the probabilistic network class are referred
to as probabilistic networks and populations of the simulation-based and real-world
network class are referred to as realized networks.

We define a multi-layer network G = (GT , GC) with a transportation layer GT =
(V T , ET ), a collaboration layer GC = (V C , EC), and a mapping of the interdepen-
dence between the layers, which allocates carriers (nodes) c ∈ V C in the collaboration
network to the services e = (v1, v2, c) ∈ ET they operate in the transportation net-
work. The size of the sets is denoted by NT = ∣V T ∣, MT = ∣ET ∣, NC = ∣V C ∣, and
MC = ∣EC ∣.

The first definition (ER) of the physical layer is a probabilistic network class. The
physical layer GT (NT , p) is defined as an Erdos-Renyi network G(N, p) with N nodes
and a probability of p that an arbitrary edge exists. The activity of carriers in the
physical network is described by a probability pξ

c for a carrier c ∈ V C to operate a
service on an arbitrary transport edge.

The second definition (RGP) covers realized networks generated from a random graph
process that induces the desired network characteristics. It is based on the simulation
of scale-free random network instances using the Barabasi-Albert model (Barabasi
and Albert, 1999). Scale-freeness is a general characteristic found across different
types of real-world transport networks including air transport (Guimera et al., 2005)
or public transport networks (Ferber et al., 2009). In the context of freight transport,
the notion of scale-free networks is rather novel. The transport layer is defined
as a composition of scale-free carrier networks with power-law degree distribution
P (k) ∼ k−δ. The N c ≤ NT nodes of these carrier networks are randomly matched
with the N nodes of the full transportation layer such that it follows a power-law
distribution P (kc) in terms of the number of times kc a node from a carrier network
is matched with a certain node in the full network, i.e. the number of distinct
carriers that operate a service adjacent to that node. Under the assumption that the
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degree distribution of the individual carrier networks is independent of P (kc), i.e.
the carrier network degree of a node is not correlating with the number of distinct
carriers operating from that node kc, the actual degree distribution P (k) of the full
network is also approximately power-law distributed (Sun and Zhuge, 2011). See
Figure 3.2 in Chapter 3 for a visualization.

For the two random network definitions we introduce the additional parameter b of
the Zipf law f(i, b, NC) =

1
ib

∑NC

j=1
1

jb

describing the market structure in terms of disparity

in carrier sizes, i.e. the distribution of services per carrier pξ
c. f(i, b, NC) describes

the share of total services of the i-th largest carrier. b = 0 corresponds with a fully
balanced carrier market structure, i.e. each carrier operates a share of 1/NC of total
services. Under b = 1, the largest carrier operates around 20% of all services and the
largest 7 operate 50%. The third definition (IML) is based on a real-world network.
We use the intermodal links data set1 (IML) containing all intermodal services by
rail and barge in the European hinterland for container transport in 2019.

The first definition (ER) of the collaboration layer again follows a probabilistic net-
work class. Each possible collaboration link between the NC carriers exists with
probability pκ, which corresponds with an Erdos-Renyi network GC(NC , pκ). With
this definition, the structure of physical and collaboration layer are uncorrelated and
therefore only the share of disrupted carriers is relevant, but not which carriers are
disrupted. The second collaboration network class (PInd) is derived from the physical
network. The first MC = pκ NC(NC−1)

2 edges are selected from the list of carrier pairs
(potential edges) sorted by the number of adjacent services they have in the physical
network. This leads to carriers’ positioning in both layers being correlated, since
large carriers with many transport services tend to have many touch points with
other carriers, so they will exhibit a large degree in the collaboration layer. This
mechanism follows the rationale that collaborations will first be established where
they can generate the most synergies for the carriers and the system. A collaboration
between carriers that have many adjacent services tends to be particularly useful.

The third collaboration layer definition (PIndDB) is also physical-induced, prioritiz-
ing collaborations between carriers with many adjacent services, but employs a degree
balancing principle. It follows a process of allocating collaborations one-by-one by
the number of adjacent services until the desired connectivity MC = pκ NC(NC−1)

2 is
reached. Along this process, collaborations can only be established between carriers,

1Source: https://www.ecorys.com/netherlands/our-work/intermodal-links-disclose-your-own-
hinterland-data (Date accessed: February 21, 2022)
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whose current number of collaborations (degree) is smaller than the current maxi-
mum number of collaborations per carrier in the network. When at some point all
carriers have equal degree, i.e. no more collaboration can be established given the
degree restriction, the allowed maximum number of collaborations is increased by
1. Thereby, all carriers have about the same amount of collaborations at each level
of connectivity, representing a scenario, in which collaborations are more exclusive
between partners, i.e. complex to establish and subject to the carriers’ other collab-
orations. The level of connectivity at the collaborative level can be manipulated by
varying the main parameter pκ describing the expected share of existing connections
in the collaboration layer.

Performance of the system is measured using the ’Efficiency’ measure ϕeff(G) =
1

N(N−1)
∣{i,j∈V T ,d(i,j)<∞}∣

ϕsp(G) defined in Chapter 3, which is inspired by the efficiency
measure of Latora and Marchiori (2001). ’Efficiency’ does not only capture average
transport time between arbitrary node pairs, it also captures network coverage. Com-
pared to the average shortest path measure ϕsp(G), which is not providing realistic
results if a network has disconnected components, the efficiency score is discounted
by the share of disconnected node pairs in order to capture the performance impact
of disconnected network components. It is a good proxy to measure the level of
achievement of collaborative transport goals, which are the creation of more feasible
transport routes in order to connect more origins and destinations and to connect
them through faster and more flexible services while achieving a higher utilization
of existing transport infrastructure. Computing ’Efficiency’ is not straightforward
due to the multi-layer nature of the system. The links in the collaboration layer
constrain the feasibility of transshipments in the transportation layer, which curtails
the number of feasible transport routes and therefore needs to be taken into account
when calculating shortest paths.

For realized networks of the simulation-based and real-world network class, a minor
adjustment needs to be made to breadth first search (BFS) to compute ϕeff

real(G
T , GC).

Not only the nodes are stored per level, but also the carriers operating a feasible
service to these nodes. In each step of BFS, transshipment feasibility needs to be
assessed between the stored carriers and carriers operating on outgoing edges leading
to not visited nodes. In probabilistic networks, however, ’Efficiency’ cannot be com-
puted in a deterministic manner as transport services, collaborations, and transship-
ment feasibility are probabilistic. Instead, we compute expected ’Efficiency’ ϕeff

prob,
which requires the adjustment of existing average shortest path approximations due



4.3. Methodology 115

to paths being probabilistic. This is achieved by introducing a transshipment prob-
ability pθ describing the feasibility of transshipment between two arbitrary adjacent
edges. Efficiency is then calculated by

ϕeff
prob(N

T , p, pθ) = (1 − F∞)
ϕsp

prob(NT , p, pθ)
, (4.1)

where ϕsp
prob(N

T , p, pθ) = ∑
∞

d=1 dfd

∑∞d=1 fd
. fd = Fd−1 − Fd describes the probability that two

arbitrary nodes are at distance exactly d from each other and is derived from the
recursive equation Fd = Fd−1(1 − ppθ)(N−1)(Fd−2−Fd−1) with F0 = 1 and F1 = 1 − p.
F∞ describes the probability that an arbitrary node pair is not connected by a
transshipment-feasible path. The transshipment probability can be computed us-
ing the collaboration probability pκ and the probability pξ

c that a carrier c ∈ V C

operates a service on an arbitrary edge:

pθ = 1 − ∏
cq,cr∈V C

q≠r

(1 − pκpξ
cq

pξ
cr
) ∏

cq,cr∈V C

q=r

(1 − (pξ
cq
)2). (4.2)

See Chapter 3 for a full derivation.

4.3.2.2 Integration transportation-collaboration model with disruption
propagation

In order to capture the impact of propagating disruption at the collaborative level,
the transportation-collaboration network model needs to be coupled with a failure
propagation model. We use a standard discrete networked SIR model (Newman,
2002) with initial infection probability ρ = 1/NC corresponding with an expected
initial removal of a single random node, a fixed propagation rate τ , and a recovery
rate γ = 1.

We use the notation Γi to describe the state of the collaboration layer after the i-th
stage of disruption propagation (in literature mostly referred to as the i-th discrete
time step) under a given collaborative connectivity pκ. The corresponding ’Effi-
ciency’ is denoted by ϕeff(Γi, pκ). More parameters are relevant to describe the
input transportation-collaboration system G = (GT , GC), but except from pκ they
are constant within each experiment and therefore omitted. The relevant stages of
disruption are ’no disruption’ ϕeff(Γ0, pκ) and ’final state after propagation ceases’
ϕeff(Γ∞, pκ).
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ϕeff(Γ0, pκ) can be simply computed using BFS (realized networks) or equation
(4.1) (probabilistic networks), since Γ0 describes the undisrupted collaboration layer.
Computing ϕeff(Γ∞, pκ), however, requires the evaluation of SIR. Many variations of
the SIR model can be solved analytically or numerically using differential equations
(Kiss et al., 2017; Newman, 2002). In the present context, the choice of SIR model
variant depends on the suitability with the transportation-collaboration setup.

The setups with probabilistic (ER) collaboration network GC(NC , pκ) can best be
treated with the discrete EBCM approach (edge-based compartment model, see sys-
tem (6.10) in (Kiss et al., 2017)). EBCM employs a Markovian modelling approach
to analytically approximate the expected final epidemic size of an outbreak for con-
figuration model networks, i.e. networks with arbitrary degree distributions but no
degree correlation (Newman, 2010). Exploiting the approximate independence be-
tween the statuses of neighbouring nodes in large networks, the share of eventually
disrupted nodes can be approximated by the probability that a randomly selected
node v gets disrupted by an initially disrupted node u following a disruption chain
u − v of length d. The aggregated expected share of disrupted nodes Γ∞ ∈ [0, 1] pro-
vided by EBCM is sufficient to calculate the resulting ’Efficiency’ score ϕeff . If the
transport layer is (ER), ϕeff

prob(N
T , p, pθ) is computed by incorporating failed collab-

orations into the transshipment probability pθ and plugging it into Equation (4.1).
Therefore, collaboration probability pκ in Equation (4.2) needs to be adjusted by the
probability (1 − Γ∞)2 that none of the two carriers has faced disruption, i.e. their
collaboration is still in place.

pθ = 1 − ∏
cq,cr∈V C

q≠r

(1 − (pκ (1 − Γ∞)2)pξ
cq

pξ
cr
) ∏

cq,cr∈V C

q=r

(1 − (pξ
cq
)2). (4.3)

If the transport layer is realized (IML, RGP), random realizations of disrupted carri-
ers in the collaboration layer GC are generated using Γ∞ and the resulting ’Efficiency’
ϕeff

real(G
T , GC) is computed. EBCM is simple and accurate, but more importantly,

the coupling between failure propagation at the collaborative level and physical im-
pact is feasible.

If the transport network is realized from a random graph process or data (RGP, IML),
and the collaboration network is physical-induced (PInd, PIndDB), feasible coupling
between the models is a bit more difficult. Due to the correlation between carriers’
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Physical
network

Collaboration
network

Performance measurement
(computation of ’Efficiency’)

SIR
model

Integration of transportation-collaboration instance
and SIR model

ER-ER Probabilistic
(Erdos-Renyi)

Probabilistic
(Erdos-Renyi)

Expected ’Efficiency’ based on
Equations (4.3) and (4.1) EBCM Fully analytical: EBCM output (probability of disruption

for arbitrary node) can directly be plugged in Eq. (4.3)

RGP-ER
Random graph
process (composed
scale-free)

Probabilistic
(Erdos-Renyi)

Breadth-first search with trans-
shipment feasibility check
(backtracing of operating carriers)

EBCM
Mixed analytical-simulation: EBCM output is used to generate
random realizations of failed nodes, ’Efficiency’ is computed
for each realization, and average of results is taken

RGP-PInd/
PIndDB

Random graph
process (composed
scale-free)

Induced from
physical network
(adjacent services/
degree balancing)

BFS with transshipment
feasibility check

Individual-
based

Mixed analytical-simulation: Same as RGP-ER, but
random realizations of failed nodes are generated using
the weights per node provided by individual-based output.

IML-ER From data
(Intermodal Links)

Probabilistic
(Erdos-Renyi)

BFS with transshipment
feasibility check EBCM Mixed analytical-simulation: Same as RGP-ER

IML-PInd From data
(Intermodal Links)

Induced from
physical network
(adjacent services)

BFS with transshipment
feasibility check

Individual-
based Mixed analytical-simulation: Same as RGP-PInd

Table 4.1: Overview of the different transportation-collaboration instances considered in
this work and how they are analyzed regarding the impact of disruption at the collaborative
level. Each row describes a transportation-collaboration instance including the two network
layers, the corresponding performance measurement approach, the appropriate SIR disrup-
tion propagation model, and a description of how the outcome of the SIR model serves as an
input for performance measurement. For details regarding physical network instances and
performance measurement, see Chapter 3. For details regarding SIR see Kiss et al. (2017)

positioning in the physical and in the collaboration layer, carriers differ in their crit-
icality for the system and it matters which carriers are affected by the propagation,
which means that the outcome of the propagation model cannot be an aggregate
failure rate, but needs to be reported per carrier. The individual-based approach in
(Kiss et al., 2017), system (3.30), satisfies this requirement. It describes the propaga-
tion dynamics in the system at each stage of disruption through a set of differential
equations with the initially disrupted nodes as initial condition. We apply closure
at the level of pairs, i.e. propagation dynamics in triples, quadruples and beyond
are only approximated in order to get an analytically tractable system. Solving this
system yields an array of disruption probabilities Γ∞(c) with Γ∞ = 1

NC ∑c∈V C Γ∞(c),
which can be used to compute disrupted instances of the collaboration layer GC and
the resulting ’Efficiency’ ϕeff

real(G
T , GC).

The explanations above are summarized in Table 4.1. It shows the different combi-
nations of transportation (ER, RGP, IML) and collaboration (ER, PInd, PIndDB)
layer definitions as well as the corresponding SIR model and performance evaluation.
Implementations of the SIR model variants used are provided by the Python package
(EoN) accompanying (Kiss et al., 2017).

It is important to mention that the SIR models we use provide the expected outcome
(share of disrupted nodes) conditional to the marginal initial disruption turning into a
cascade. However, in case of a sufficiently small initial attack, low transmission rate,
or low network connectivity, there is a significant chance that (almost) no propagation
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takes place. Ignoring the no-cascade scenario could lead to an overestimation of
vulnerability. Therefore, we want to compute a synthesized expected outcome taking
into account the binary random variable describing the risk of a cascade happening.
The parameter of this binary variable is called epidemic probability pϵ and can be
determined depending on the propagation probability τ and the degree distribution
using system (6.2) in (Kiss et al., 2017). In an Erdos-Renyi collaboration network, the
degree distribution is purely defined by the average degree (NC−1)pκ. The aggregate
outcome is a convex combination of ’no disruption’ and ’disruption including cascade’
system performance with parameter ϵ.

ϕeff
agg(Γ∞, pκ, pϵ) = (1 − pϵ)ϕeff(Γ0, pκ) + pϵϕeff(Γ∞, pκ) (4.4)

and serves as an additional indicator of vulnerability in addition to the outcome with
assumed cascade ϕeff(Γ∞, pκ).

4.3.3 Analytical derivation of threshold connectivity in ER
collaboration networks

The threshold connectivity pκ∗, which maximizes the expected outcome ϕeff
agg(Γ∞, pκ, pϵ)

under disruption to a random marginal fraction of the collaborative network, can be
derived analytically for instances with ER collaboration network using the repro-
duction number R0. R0, a well known indicator for the spread of epidemic diseases,
describes the infection behaviour of a typical infected node early in the epidemic with
most of the population still susceptible, i.e. how many new infections are expected
to be caused by that node. If R0 > 1, it is likely that initial infections turn into an
epidemic (Kiss et al., 2017). See Appendix 4.B for a derivation of R0 in probabilistic
network classes that are based on the configuration model. In ER collaboration net-
works, every node has the same expected degree, and R0 can simply be calculated
from the expected transmissions: R0 = (NC − 1)pκτ .

The expected performance of a collaborative transport system under a marginal
random attack is maximized, if collaborative connectivity is as high as possible to
create maximum synergies, but sufficiently low in order to have very little risk of a
disruption cascade. This condition is satisfied if the reproduction number R0 = 1,
which is the case if
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pκ∗ = 1
(NC − 1)τ

. (4.5)

The threshold pκ∗ is purely defined by the number of edges and the transmission rate.
Thus, if the collaboration network is ER, the structure of the physical layer only has
an impact on the actual performance level, but not on the threshold itself. However,
if the collaboration network is induced from the physical layer (PInd), the degrees
are correlated and the physical layer can indeed have an impact on the threshold pκ∗.

4.4 Results

The results section is divided in three parts. First, the general trade-off between
synergies and vulnerability as well as the existence of a connectivity threshold is
analyzed using the analytical (ER-ER) network instances and verified by the (RGP-
ER) instance with more realistic transportation networks. Second, the impact of
certain network characteristics and model parameters on the threshold level and the
overall trade-off are analyzed. Isolated variation of single characteristics is achieved
by analytical means, whereas combined variation of multiple characteristics is done
using network simulations (RGP). Third, the trade-off is tested on a real-life collab-
orative transport system. In each instance, the impact of a disruption and potential
cascade of failure in the collaboration network on the system performance ϕeff are
observed under varying collaborative connectivity pκ, which is the realized share of
all potential collaborations between all carriers.

4.4.1 Synergy-vulnerability trade-off and connectivity thresh-
old

The (ER-ER) instance is analytically tractable and therefore does not require any
simulations. The analytical computation produces the expected ’Efficiency’ for a
realization from a fully probabilistic transportation-collaboration instance. Figure
4.2 (a) visualizes the results for (ER-ER) for a system with an ER physical network
GT (1000, 0.1), an ER collaboration network GC(100, pκ), and a somewhat disparate
market structure of carriers (b = 0.5), i.e. there are a few larger and many interme-
diate and small carriers in terms of expected services operated. Propagation is com-
puted by solving the discrete SIR model (EBCM) for an initial infection probability
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(a) (ER-ER) (b) (RGP-ER)

Figure 4.2: The figures show efficiency of two different collaborative transport systems
(carrier size distribution b = 0.5) under disruption at the collaborative level for varying
collaboration network density pκ. The blue line shows efficiency without disruption, the
red line shows efficiency with disruption (τ = 0.1) given that a cascade is triggered, and the
purple line shows the aggregated outcome weighted by the epidemic probability pϵ. The
vertical green line indicates the threshold connectivity pκ∗. Blue dots show the results of
a Monte Carlo simulation with the same parameters. The average of simulation instances
corresponds with the purple line. (a) Probabilistic networks: System with probabilistic
Erdos-Renyi physical GT

(1000, 0.1) and collaboration GC
(100, pκ

) layers. (b) Simulated
networks: Average of 15 realized (composed scale-free) physical network instances. The
collaboration layer with 30 carriers is described by an Erdos-Renyi network GC

(30, pκ
).
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ρ = 1/NC and fixed propagation rate τ = 0.1. The analytical result is complemented
by a Monte-Carlo simulation with the same parameters (blue dots). Instances of
the Monte-Carlo simulation reveal the binary nature of the cascade threat by either
corresponding with the no cascade line (blue) or the cascade line (red), whereas the
average of instances at each level of pκ corresponds with the aggregated result ϕeff

agg

(purple line).

The results show the hypothesized trade-off between system performance and vulner-
ability for varying collaboration connectivity. Increasing the number of collaborations
initially leads to a steep increase of system functionality as low connectivity hinders
propagation and consequently disruption at the collaborative level has very little im-
pact. If carriers only have few partners, they are less likely to be affected by disruption
caused by a partner. If no disruption takes place (blue line), increasing collaboration
connectivity has only a positive effect on performance, since more collaborations lead
to more transshipments and more paths being feasible in the physical network, which
ultimately lowers the average distance between destinations. The disruption-affected
performance lines (red and purple line), however, do not increase monotonously. The
aggregated performance (purple line) reaches a maximum at a density of pκ = 0.101,
then falls steeply to its lowest level beyond pκ > 0.4, indicating that all collaborations
will be lost if such highly connected networks experience disruption.

The range with intermediate connectivity pκ ∈ [0.05, 0.3] is particularly interesting
since there is a trade-off between additional benefits in the physical network and
higher risk of failure in the collaboration network. At pκ∗ = 0.101, sufficient collab-
orations are in place to reap most of the potential synergies given by the physical
network, while the collaboration network is sparse enough that cascades are unlikely
or only disrupt a small part of the collaboration network. In epidemic terms, this
means that the reproduction rate R0 = 1, indicating that a typical node infected
early in the propagation process infects exactly one other node on average. Under
normal circumstances, this is not sufficient for a cascade. The more pκ is increased
from there, the lower the marginal added synergies and the higher the reproduction
rate R0 > 1. Both the chance that a cascade happens as well as the impact are
rapidly increasing at pκ > pκ∗. Nevertheless, up until pκ = 0.3, which corresponds
with a reproduction rate of R0 = 2.97, there is still a significant chance (pϵ = 0.06
at pκ = 0.3) that an initial disruption ceases quickly and does not trigger a cascade,
which is confirmed by the Monte-Carlo simulation. Collaboration connectivity higher
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than the maximum shown here can be optimal for systems, in which disruption at
the collaborative level is very unlikely in the first place.

Results with realized network instances verify the finding that increasing collabora-
tion density comes with a trade-off between synergies and vulnerabilities, as Figure
4.2 (b) shows efficiency curves similar to those found in the probabilistic instance.
The connectivity threshold in the (b) panel (pκ∗ = 0.34) is much higher than in the
(a) panel (pκ∗ = 0.101) due to the lower number of carriers (cf. Eq. (4.5)). The
main difference lies in the creation of synergies. In contrast to the probabilistic setup
(ER-ER), which has the highest marginal efficiency increase at pκ = 0 and exhibits
declining increase from there on, efficiency for realized networks and ER collabora-
tion layer (RGP-ER) grows in a logistic fashion with slow increase at low pκ, high
increase at intermediate pκ, and ultimately converging against an upper bound at
pκ = 1. The difference in synergy creation lies in the random allocation of collab-
orations (ER). Random allocation is a solid strategy in case the physical network
is also fully random (ER-ER), since every collaboration is useful. If the physical
network resembles a real-world network (RGP-ER), the first few randomly allocated
collaborations are unlikely to be useful since carriers might be operating in different
regions of the network.

4.4.2 Influence of network characteristics and model parame-
ters on trade-off

After showing the existence of a general synergy-vulnerability trade-off as well as
a connectivity threshold, we are now assessing how structural network features can
lead to a deviation from the baseline outcome in the previous subsection. Therefore,
the role of market structure b, propagation probability τ , and collaboration layer
structure are analyzed.

The former two can be analyzed by analytical means in the (ER-ER) setup. Chang-
ing the collaboration layer structure, however, is more complicated since non-ER
collaboration layer structures introduce layer correlation, which cannot be captured
analytically. Therefore, we first conduct a sensitivity analysis of market structure
and propagation probability in the (ER-ER) setup followed by a simulation-based
analysis including PInd and PIndDB collaboration layers as well as combinations of
the three characteristics.
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(a) Variation of b (b) Variation of τ

Figure 4.3: The figures show the efficiency ϕeff for the same network setup as in Fig. 4.2,
but with (a) different market structures b ∈ {0, 0.5, 1} and (b) different failure propagation
probabilities τ ∈ {0.05, 0.1, 0.5}. The permanent lines shows efficiency without disruption,
the dotted lines show efficiency with disruption given that a cascade is triggered, and the
dashed lines show the aggregated outcome weighted by the epidemic probability pϵ.

4.4.2.1 Carrier market structure and propagation probability

Carrier market structure (choice of b) and propagation probability (choice of τ) can be
evaluated in an isolated fashion using the fully analytical (ER-ER) instance. Having
an ER collaboration layer leads to a decoupling between physical and collaboration
layer in the sense that the probability of existence of a collaboration link is in no
way influenced by the physical layer structure. As a result, the impact of variation
of model parameters can directly be traced back to the originating layer.

Market structure (choice of b) has a large impact on the functionality of the system
in general, as shown by the difference in performance between balanced (b = 0, red
line) and disparate (b = 1, yellow line) market structure at pκ = 0 in Fig. 4.3 (a). It
influences the criticality of carriers and a system’s overall synergy potential through
collaboration. The more balanced, the more synergies can be created through col-
laboration (Cruijssen et al., 2007a; Harter et al., 2022), leading to a higher overall
performance increase as collaborations are established. However, since these crit-
icalities do not correlate with the collaboration constellation in this instance, the
reproduction rate R0 is not affected and therefore market structure has no impact
on the connectivity threshold and the performance-vulnerability trade-off. In con-
trast, variation of propagation probability τ only has an impact in the collaboration
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layer, influencing the cascade risk and thereby leading to a shift of threshold pκ∗,
but is not influenced by the physical network structure. Figure 4.3 (b) shows the
synergy-vulnerability trade-off for different propagation probabilities τ , revealing the
expected outcome. The higher τ , the lower the connectivity level pκ at which the
reproduction rate R0 = 1 (cf. Eq. (4.B.4)) and cascade vulnerability outweighs the
synergies gained through collaboration.

4.4.2.2 Correlation layer structure and combined effects

It is reasonable to assume that in most collaborative transport systems, carriers will
establish their partnerships based on their potential benefit given the positioning of
services in the physical layer, creating a non-random collaboration layer structure
that correlates with the positioning of carriers’ services in the physical layer. This
can not only have an impact on the trade-off by itself, but can also moderate the
effect of market structure and propagation probability. Changes to these variables
now indirectly affect both layers, making it more difficult to predict the outcome.
Layer correlation cannot be captured by our analytical approach, hence we resort
to simulation-based analysis with networks realized from a random graph process.
We show systematically the role of collaboration layer structure induced by layer
correlation on the trade-off including the combined effects with market structure and
propagation probability.

Figures 4.4 and 4.5 show the impact of the three alternative collaboration layer
structures ER, PInd, and PIndDB under different market structure and propaga-
tion probability setups. We expect that prioritization of collaboration links between
carriers with many adjacent services (PInd) will lead to a steeper synergy increase
at low pκ compared to random allocation, i.e. more synergies can be realized with
the same amount of collaboration links. Moreover, the number of adjacent services
is expected to be strongly correlated with the size of the two carriers in terms of
number of services operated. As a result, the PInd mechanism tends to connect large
carriers first, leading to a high concentration of collaboration links among these car-
riers, whereas the rest of the collaboration network is sparser compared to a random
network. High connectivity within this ’rich-club’ causes a higher reproduction rate
R0 in the respective subnetwork, which facilitates failure cascades and leads to a
shift of the connectivity threshold to the left, pκ∗

P Ind < pκ∗
ER. The physical-induced

collaboration layer with degree balancing PIndDB is based on the rationale to es-
tablish correlations in a synergy-creating way while avoiding the creation of highly
connected clusters, i.e. combine the synergy creation from PInd and the cascade
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(a) τ = 0.1, b = 0.0 (b) τ = 0.1, b = 1.0

Figure 4.4: The figure shows the average efficiency ϕeff of 15 realized (composed scale-free)
physical network instances under disruption at the collaborative level for varying collabora-
tion network density pκ and propagation probability τ = 0.1. Market structure comes in a
fully balanced setup with b = 0 (a), and a disparate setup with b = 1 (b). Different collabo-
ration layer structures with 30 carriers are compared: an uncorrelated Erdos-Renyi network
GC
(30, pκ

) (ER, blue), collaborations derived from the physical network based on the num-
ber of transshipments (PInd, red), and the same transshipment based structure with degree
balancing (PIndDB, yellow). The permanent lines show efficiency without disruption, the
dashed lines show efficiency with disruption (τ = 0.1) given that a cascade is triggered, and
the dotted lines show the aggregated outcome weighted by the epidemic probability pϵ. Blue
dots show the results of simulations. The average of simulation instances corresponds with
the purple line.

resilience from the random allocation. This should lead to an intermediate result
with synergy realization slightly below PInd, but connectivity threshold at the level
of ER.

These hypothesized outcomes are confirmed in the instance with disparate market
structure (b = 1) and low propagation probability (τ = 0.1), see 4.4 (b). Under bal-
anced market structure, however, neither can PInd realize significantly more synergies
nor is PIndDB resilient against cascades. In fact, random allocation of collaborations
exhibits better performance at almost every level of connectivity and both with and
without disruption. If all carriers are the same size, there is little potential to strate-
gically select collaboration links, which eliminates the benefits of PInd. At the same
time, PInd still leads to concentration of collaboration links, resulting in a sort of can-
nibalization of synergies. Random selection of collaboration links leads to a balanced
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(a) τ = 0.3, b = 0.0 (b) τ = 0.3, b = 1.0

Figure 4.5: The figure shows the same as Figure 4.4. but with a propagation probability
τ = 0.3

constellation of correlation links such that synergies are realized in a complementary
way.

Results with high propagation probability (τ = 0.3) are shown in Figure 4.5 (pκ only
in range [0, 0.5] for better visibility). Higher propagation probability leads to a lower
connectivity threshold and lower peak performance under disruption as shown in the
isolated analysis. Especially under balanced market structure, synergies through
collaboration are vitiated through a high cascade risk before they are even really no-
ticeable. Otherwise, interaction effects with collaboration layer and market structure
are limited. See Fig. 4.6 for an overview of the interaction between the effects of col-
laboration layer structure on vulnerability to failure cascades under varying market
structure and propagation probability.

4.4.3 Application to intermodal links data set

Using a real-world data set of intermodal transport services by rail and barge in Eu-
rope yields the same trade-off as in the analytical and simulation-based approaches,
see Figure 4.7 and 4.8. The main difference is that the randomly generated collab-
oration network (IML-ER) is now less efficient in every aspect, facing high risk of
cascades already at very low connectivity. (IML-PInd) in turn creates high synergies
already at a low level and is relatively robust to variation of connectivity in the range
of pκ = [0.05, 0.25]. The reason lies in the specific characteristics of the intermodal
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Figure 4.6: Overview of effect of collaboration layer structure on vulnerability to failure
cascades under varying model parameters market structure (b) and propagation probability
(τ)

links network. The network has a heterogeneous market structure with a small num-
ber of large carriers and many small ones, which leads to a steep synergy increase
at low pκ similar to the previous instances. At the same time, many carriers have a
different regional focus, covering the network regions in a complementary way, and
avoiding the creation of a highly connected subnetwork of collaborations. The second
group of carriers getting collaboration links at medium pκ are connectors between
the large carriers, not contributing much to shorter average transport times, but
providing alternative services in case the collaboration between the largest carriers
fails. Thereby, performance under disruption can be uphold at the threshold peak
level despite increasing cascade risk. Beyond pκ = 0.3, the difference to a random
collaboration network converges to 0. The IML network seems to have favourable
conditions over the random and simulation based network classes, which could for
instance be the outcome of a Darwinistic process, in which resilient features emerge
over time as they are able to respond better to disruption.

4.5 Discussion

While the potential synergies of collaboration between carriers in transport networks
are extensively studied (Cruijssen et al., 2007b; Pan et al., 2019), this research puts
synergies into perspective with the threat of adverse impact through disruption cas-
cades at the collaborative level. A decent number of papers look at conditions for
establishing collaborations and their stability, e.g. commercial arrangements (Agar-
wal and Ergun, 2010; Houghtalen et al., 2011; Özener et al., 2011), organizational
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(a) (IML-ER) (b) (IML-PInd)

Figure 4.7: The figure shows the average efficiency ϕeff of the European network of inter-
modal hinterland transport services under disruption at the collaborative level for varying
collaboration network density pκ. The collaboration layer with 117 carriers is described
by (a) an Erdos-Renyi network GC

(117, pκ
) and (b) a network derived from the number

of adjacent services in the physical network (physical-induced). The blue line shows effi-
ciency without disruption, the red line shows efficiency with disruption (τ = 0.1) given that
a cascade is triggered, and the purple line shows the aggregated outcome weighted by the
epidemic probability pϵ. Blue dots show the results of simulations. The average of simula-
tion instances corresponds with the purple line
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Figure 4.8: For the same network setup as in Fig. 4.7, the present figure shows a com-
parison of efficiency ϕeff under disruption at the collaborative level for an Erdos-Renyi
collaboration layer (blue lines) and a physical-induced collaboration layer (red lines). The
solid lines shows efficiency without disruption, the dashed lines show efficiency with disrup-
tion given that a cascade is triggered, and the dotted lines show the aggregated outcome
weighted by the epidemic probability pϵ.

issues (Audy et al., 2012; Verstrepen et al., 2009; Zacharia et al., 2011), the creation
of trust (Pomponi et al., 2015), or instability through overcapacity (Giudici et al.,
2021), but only in Chapter 3 of this work we made a first attempt at studying the
system impact of disruption at the collaborative level under varying carrier market
structure. Nevertheless, knowledge on the dynamics of disruption at the collaborative
level and the concomitant amplification of the system impact as shown in Figure 4.1
is limited. Disruption at the collaborative level is not necessarily an isolated event re-
ducing the transportation functionality, but collaborations form a network, in which
disruption can propagate and amplify the disruption at the physical level. Only in
the related field of cyber-physical systems, the relationship between connectivity and
vulnerability is studied at the non-collaborative example of power-communication
coupled systems (Korkali et al., 2017; Schneider et al., 2013). Following the hypoth-
esis that high levels of collaboration facilitate the emergence of disruption cascades
at the collaborative level, which beyond a certain level can outweigh the synergies of
collaboration, this research constitutes a crucial step towards filling this gap.

The attempt to reach the research objective is made through coupling two existing
models for collaborative transport (Chapter 3) and epidemic spreading in networks
(Newman, 2002) in order to capture the system impact of disruption propagation at
the collaborative level under varying connectivity. The coupled model can handle a
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probabilistic network class suitable to derive analytical results and establish a general
relationship, but it is also capable of handling arbitrary realized network instances
generated through a random graph process or from data. Moreover, with moderate
adjustment it can be used for related problems in the field of cyber-physical systems
with propagation risk at the cyber level and decentrally managed flow at the physical
level.

Our research finds that the level of collaborative connectivity creates a trade-off
between synergies of collaboration and vulnerabilities through disruption cascades.
Maximum system functionality under disruption is reached at a connectivity thresh-
old, when a large share of potential synergies is reaped while cascade risk is still low.
Very low connectivity and very high connectivity lead to poor outcomes due to low
synergies in the former case and high cascade risk combined with decreasing marginal
added synergies in the latter. If large carriers are more likely to establish a collab-
oration among themselves, cascades are facilitated and the connectivity threshold is
lower. Despite connectivity being a key driver, the disruption propagation following
a random disruption at the collaborative level is still a random outcome, i.e. there is
a chance that no or almost no propagation takes place. With increasing connectivity,
this chance becomes negligible. However, since synergies through collaborations are
realized in any case while disruption cascades are subject to an initial disruption,
systems in which initial disruption is unlikely to happen in the first place can afford
higher connectivity for the sake of more synergies.

The findings of this research are an important complement to the existing knowledge
on the synergies and vulnerabilities induced by collaborative integration in collabora-
tive transport networks, but also in cyber-physical systems in general. Our findings
on the impact of the density of collaboration networks on their vulnerability to disrup-
tion spreading complement Wang et al. (2019) and Liu et al. (2021), who focus on the
impact of network structure and the criticality of single nodes on epidemic spreading,
respectively. For a full assessment of vulnerability at the collaborative level, both
structure and connectivity need to be assessed. Being a multi-layer system, only
looking at the collaboration layer is not sufficient. Exploring the moderating role of
carrier market structure in the physical network represented by the distribution of
carrier sizes, Chapter 3 contributes to an even more comprehensive understanding.
Cardillo et al. (2013b) find that increasing collaborative transport contributes to the
robustness of transportation at the physical level due to more flexibility in case of
disruption of services. While this is undisputed and also captured by the synergies
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in our model, collaborative connectivity also leads to a higher vulnerability at the
collaborative level, which in turn creates vulnerability against physical disruption,
and therefore needs to be considered for decisions on the collaborative constellation.

The stability of collaborations is addressed by Giudici et al. (2021) and Houghtalen
et al. (2011), who find that instability can result from overcapacity and commercial
misalignment, respectively. In fact, our work shows that stability is not only a
bilateral thing, but also subject to the stability of adjacent collaborations, which
should be taken into account to enrich the assessment of collaboration stability. Last
but not least, Cruijssen et al. (2007b) find that collaboration can be compromised by
insufficient information infrastructure, which is particularly often the case in systems
with many SMEs. On the one hand, systems with many small actors usually have
a relatively sparse collaboration network, which relieves the high risk of disruption
and propagation due to poor information infrastructure to some extent. On the other
hand, the need for communication and the potential synergies in such systems is very
high (Harter et al., 2022), which will lead to the establishment of more collaborations.
If infrastructure investments are not increased accordingly, high connectivity and
high propagation rate can lead to exceptionally high vulnerability. In fact, even if
an individual node is well protected, a single disrupted carrier somewhere else in
the network can lead to the disruption of the entire collaborative system. Carriers
therefore have a mutual responsibility to ensure cyber security.

Due to the increasing relevance of the results and the general applicability of the
developed model, promising directions for future research building up on this work are
plenty. A very important step would be to gather empirical backup for the calibration
of the model, in particular the disruption propagation, and to do real-world case-
studies in order to substantiate the results. Moreover, this research aims at using
minimum complexity sufficient to show a general trade-off. The knowledge about this
trade-off is only at its starting point and can be enriched in various ways. Follow-up
studies on the role of and interplay between physical network structure (e.g. scale-
freeness, assortativity, rich-club), collaboration network structure (e.g. correlation
with physical layer, competitive aspects), carrier market structure (e.g. regional vs.
interregional), coupling mechanism, as well as size and type of initial attack (random
or targeted), regarding the vulnerability at the collaborative level will contribute to
the results of this study. Some of these aspects and their combinations might have
an impact on the connectivity threshold or the trade-off in general. Finally, the
integration of disruption propagation at the physical level, e.g. through congestion
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or delay propagation (Baspinar and Koyuncu, 2016), would be instrumental to get a
complete understanding of the dynamics of disruption in collaborative transport as
visualized in Figure 4.1.

The awareness of vulnerability at the collaborative level and the threat of disrup-
tion propagation inevitably triggers the discussion on how to protect a system from
such disruption. In Chapters 3 and 4 we showed that structural aspects such as
market structure and collaborative connectivity are influencing the level of vulner-
ability. The structure of a system, however, can only be influenced to a limited
extent. A seemingly more feasible solution is constituted by dedicated investments
in cyber security in order to protect selected carriers/nodes in the collaboration layer
from failure. Given that the largest carriers tend to possess the largest financial
backing, they are most likely to be able to protect themselves through such invest-
ments. This seems reasonable not only from an individual perspective, but also from
a system perspective as the largest carriers have the biggest system impact in case
of disruption. However, if propagation is prone to spread, protection is not only
about protecting the largest assets, but also about effectively mitigating the spread.
Cohen et al. (2003) showed that breaking down a network into as many roughly
equally-sized subnetworks as possible by immunizing the set of vertices that sep-
arates them, is a more efficient strategy than immunization by largest degree. In
transportation-collaboration systems, it will be a delicate question to answer under
which circumstances it is better to protect the system against spreading rather than
protecting the most important carriers.

4.6 Conclusion

The research goal of this study has been accomplished. Its results confirm the hy-
pothesis that collaborative integration in transportation systems does not only create
synergies, but also increases the risk of failure cascades at the collaborative level in
case of disruption, impacting the system performance heavily. The level of collabo-
rative connectivity is a key indicator for vulnerability at the collaborative level and
plays an important role in explaining this trade-off. A coupled model for failure
propagation in collaborative transport has been developed and turned into a tool to
understand the role of collaborative connectivity for a probabilistic network class in
an analytical fashion, and for real-world networks using simulations. This provides
the foundation to conduct further intriguing research on the trade-off between syn-
ergies and vulnerabilities, the optimal level of collaboration in transportation, and
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protection strategies through investments in cyber security. In an industry that is in-
creasingly becoming more connected through the rise of new technologies, our results
should raise awareness that the investment in cyber security needs to be ramped up
accordingly, and that investments need to be federated as a single failure can disrupt
an entire collaborative system. In this respect, this work constitutes an important
decision support for policy decisions on the collaborative integration of transport
systems.
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Appendix

4.A Justification of SIR model

SIR is the most general epidemic model applicable to a wide range of epidemic dynam-
ics including disruption propagation in collaboration and data exchange networks.
However, all results are subject to the parameters of SIR, particularly the propaga-
tion rate τ . Our choice of τ is not sufficiently backed up with data, but a sensitivity
analysis showed that the nature of the results is independent of τ . A connectivity
threshold pκ∗ ∈ (0, 1] exists for any τ > 1/(NC −1) in instances with ER collaboration
network according to Equation (4.5). If τ is smaller, even full collaborative connec-
tivity is not sufficient to create a significant cascade risk. Deriving an empirical value
for τ would require in-depth knowledge about the technical details of collaborative
integration, which can be vastly different for every system, in particular since collab-
orations between real-world companies are most likely heterogeneous, i.e. the level
of integration and synergy potential varies as well as the security and transmission
potential of such links. There are other disruption propagation models that are more
sophisticated and more tailored to a cyber-physical setup than SIR, e.g. featuring
reinfection (SIS) or a more fine-grained transmission mechanism distinguished by ra-
diation, transmission, and reception (Vermeer et al., 2018). Such propagation models
could be considered in future research, but the calibration with limited data would
be even more difficult and the added value in our context needed careful assessment.
Overall, SIR provides a sufficiently realistic depiction of propagation, while keeping
parametric complexity manageable.

4.B Computation of collaborative connectivity thresh-
old

The computation of the threshold connectivity pκ∗, which maximizes the expected
outcome under disruption to a random marginal fraction of the collaborative network,
is closely linked to the reproduction number R0. R0, a well known indicator for the
spread of epidemic diseases, describes the infection behaviour of a typical infected
individual early in the epidemic with most of the population still susceptible, in
particular how many new infections are expected to be caused by that individual. If
R0 > 1, it is likely that initial infections turn into an epidemic (Kiss et al., 2017). For
probabilistic network classes that are based on the configuration model, i.e. networks
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with arbitrary degree distributions but no degree correlation (Newman, 2010), R0

can be derived analytically following (Kiss et al., 2017). Being the neighbour of the
node that infected them, newly infected node follow the neighbour degree distribution
Pn(k) = kP (k)/⟨K⟩ with ⟨K⟩ being the average degree. A newly infected node with
transmission rate τ is expected to cause (k−1)τ new infections. The expected number
of transmissions of an early infected node can then be calculated as follows:

R0 =∑
k

Pn(k)(k − 1)τ (4.B.1)

= τ∑
k

kP (k)
⟨K⟩

(k − 1) (4.B.2)

= τ
⟨K2 −K⟩
⟨K⟩

(4.B.3)

Erdos-Renyi networks, which have a degree distribution P (k) = λk−1e−λ

k! and no degree
correlations, are the simplest application. Since average degree in our ER collabora-
tion network class is described by ⟨K⟩ = (NC − 1)pκ = λ, we get

R0 = τλ = (NC − 1)pκτ. (4.B.4)

The expected performance of a collaborative transport system under a marginal
random attack is maximized, if collaborative connectivity is as high as possible to
create maximum synergies, but sufficiently low in order to have very little risk of a
disruption cascade. This condition is satisfied if the reproduction number R0 = 1,
which we can calculate using Equation (4.B.4):

pκ∗ = 1
(NC − 1)τ

. (4.B.5)

The threshold pκ∗ is purely defined by the number of edges and the transmission
rate. Thus, if the collaboration network is an Erdos-Renyi network, the structure of
the physical layer only has an impact on the actual performance level (Harter et al.,
2022), but not on the threshold itself. However, equation (4.B.5) only holds if the
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collaboration network is an Erdos-Renyi network. If the collaboration network is
induced from the physical layer (PInd), the degrees are correlated and the physical
layer can indeed have an impact on the threshold pκ∗.
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In this dissertation, the impact of vertical collaboration in transportation systems
with multiple transport modes and carriers has been studied from a complexity angle.
Vertical collaboration allows the provision of multi-mode and multi-carrier transport
chains, creating a better connected and more flexible transport network compared to
the isolated mode and carrier service networks. It is well established in the airline
industry through code sharing and alliances, and is strongly promoted by European
policies to become a central element of the cargo transportation of the future. How-
ever, vertical collaboration comes with a strong intervention into a transportation
system on many levels, e.g. the operational, technical, or commercial levels. In fact,
the integration of multiple individual networks into a multi-mode and/or multi-carrier
network creates a new system complexity, at which the system impact of changes at
the individual level cannot be predicted easily.

Since it is crucial to understand the implications of vertical collaboration at the
system level in order to derive meaningful policies for network development, we iden-
tified the need for a network model that is able to capture the emergence of structural
characteristics of the integrated network from the inherent structure of the individ-
ual networks. Using existing and self-developed methods from the science of complex
networks, we developed a novel multi-layer network model, which maps the interde-
pendencies between the different transport modes and carriers under vertical collab-
oration along with the physical transport services. Moreover, we presented ways to
define, generate, and analyze realistic random transportation networks without the
need for actual data. We used our model to describe structural changes induced by
vertical collaboration and analyzed their impact on the transportation system with
a particular focus on the trade-off between synergies and vulnerability.

This final chapter of my dissertation comprises a summary of the main research
results as well as a discussion of promising directions for future research.

5.1 Main findings and implications

In the introduction chapter, the benefits of vertical collaboration in transportation
systems were put into relation with sources of interdependence and vulnerability and
explained in the context of hinterland container transport. Thereby, the need for a
complexity perspective on vertical collaboration efforts in transportation systems was
motivated. Moreover, the science of complex networks was identified as a suitable
method to approach such an analysis. Network science provides the right tools to
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analyze large-scale natural and engineered system and exhibits a history of impactful
research on complexity in cyber-physical systems related to transportation.

The second chapter addressed the notion of connectivity in hinterland transportation.
Since hinterland transportation chains in the past usually consisted of 1 intermodal
leg only and transshipment across multiple transport modes was rarely an option,
hinterland connectivity of ports and inland terminals was mainly defined by the
quantity of direct services offered. We showed that under increasing popularity of
intermodal transport, which is in fact fostered by European policy makers, this no-
tion is not sufficient any more. The system undergoes substantial structural changes
and relevant aspects of intermodal transport cannot be captured. First, the presence
of transport chains with multiple legs indicates that not only the directly connected
ports and terminals should be taken into account for the assessment of connectivity,
but also the ones connected through a transfer connection, i.e. the neighbours of
neighbours. Second, the offering of intermodal transport chains is facilitated by (in-
land) ports that offer transshipment across transport modes. Therefore, the modal
split of hinterland services offered by an (inland) port plays an important role for its
connectivity (RQ 2.1). We presented a new non-local and multimodal notion of con-
nectivity that captures these aspects and showed that the role of (inland) ports can
change under vertical collaboration. Smaller (inland) ports that are well connected
to the largest hubs increase their connectivity significantly and more importantly,
ports that provide intermodal transshipment are assigned a new role as multimodal
’Connector’ nodes (RQ2.2).

In purely structural terms, the chapter highlighted the increase in complexity that
comes with vertical collaboration as well as the need to review the measurement of
connectivity. Port authorities as well as policy makers will have to understand this
additional complexity for their strategic decision making, which is a challenge, but we
showed that a lot of information can be gathered with comparably simple structural
measures.

In Chapter 3 and 4, the focus shifted from transport modes to carriers. The purely
service structure based analysis of Chapter 2 was complemented by a functional
component describing the bilateral interaction and information exchange between
carriers to enable transshipment along sequential transport chains. Besides the po-
tential synergies through vertical collaboration, Chapter 3 and 4 addressed the in-
creased interdependency and subsequent vulnerability at the collaborative level that
result from collaboration. A major contribution of Chapter 3 and 4 is our multi-
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layer network model, which captures both the physical transport services and the
collaborations as separate layers, and maps the interdependency between these lay-
ers based on plausible assumptions derived from real-world collaborative transport
systems. These features allowed us to simulate disruptions in the functional network
of collaborations and assess their impact on the transport performance with struc-
tural measures only. In addition to the model itself, an approach for the generation
of realistic random networks with adjustable characteristics was developed. Using
this approach, populations of networks with arbitrary characteristics were generated
and the role and impact of specific characteristics could be compared. Beyond the
analysis in this dissertation, the model combined with the realistic random network
generation approach can serve as a valuable tool for decision support in transport
policy making. For instance, specific policies or investments can be evaluated re-
garding their impact on vulnerability. The changes associated with the policy can
be mapped in the collaboration layer and the impact can be derived through the
coupling. Moreover, favourable structural conditions of a transportation system can
be identified in order to guide the policy making or investment allocation.

In Chapter 3 we showed that vulnerability at the collaborative level is driven by the
market structure of carriers, i.e. the underlying service structure composition. As op-
posed to synergy potential, which is higher the more evenly distributed the number of
services per carrier, vulnerability is highest at intermediate disparity of carrier sizes,
whereas balances service distributions and highly disparate distributions exhibit low
vulnerability (RQ 3.1). We identified two contrary effects leading towards this coun-
terintuitive result. On the one hand, the dependence on collaboration decreases with
higher carrier size disparity as few carriers can cover large parts of the network with
little need for collaboration. On the other hand, these large carriers are obvious
targets for attacks, making the system more susceptible compared to a system with
evenly distributed carrier sizes, in which market structure cannot be exploited for
targeted attacks. In aggregate, the two effects cause a U-shaped vulnerability curve
under varying market structure. This research did not aim to provide recommen-
dations for optimal market structures of a transportation systems, since this is not
something that can easily be influenced without major political intervention. In-
stead, it can serve as a decision support for determining necessity and allocation of
protective measures against attacks to carriers’ at the collaborative level.

Chapter 4 constituted another crucial step towards the understanding of complex-
ity through vertical collaboration. Having identified structural conditions for vul-
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nerability at the collaborative level in Chapter 3, Chapter 4 connected vulnera-
bility with the synergies created through vertical collaboration. We explored how
collaborative integration can facilitate the propagation of cyber/false data disrup-
tion and potentially lead to a cascade largely disrupting the collaborative network
and consequently the capability to operate sequential transport chains. Coupling a
generic SIR propagation model with our collaborative transport network model, we
explored a synergy-vulnerability trade-off of collaborative connectivity and quantified
the performance-maximizing threshold (RQ 4.2). Establishing an increasing number
of collaborations is expectedly very beneficial as more transshipment options results
in shorter paths and more routing flexibility. However, the marginal benefits of col-
laborations are decreasing, whereas at the same time disruption cascades following a
small initial disruption are becoming more likely and at some point almost certain.
The performance-maximizing connectivity threshold is reached when connectivity is
as high as possible to create maximum synergies, but sufficiently low in order to have
very little risk of a disruption cascade. Systems with disproportionately many collab-
orations among large carriers tend to create more synergies with fewer collaborations,
but the dense ’rich-club’ subnetwork facilitates disruption propagation, leading to a
lower connectivity threshold (RQ 4.1). From a managerial perspective, these results
showed that level and quantity of collaboration should not only be assessed by its
synergy potential, but also by its contribution to failure cascade risk. This applies
to individual companies, who should carefully select the number and disruption risks
of their partners, but also to policy makers, who have the power to steer a system
towards a healthy level of collaboration. If the collaboration threshold is too low to
create sufficient synergies, investments in the security of collaboration links should
be considered, leading to lower disruption and transmission risk, and thus allowing
for more collaboration and an overall higher transport performance.

Using networks to map complex constellations in vertically integrated transportation
systems, this dissertation provided a tractable interface to study the impact of dis-
ruptive changes to transportation systems. While each chapter comprises a number
of findings relevant for managerial practice, it is the attempt to describe complex
issues with a tractable framework that prevails across all chapters. It allowed us to
analyze and understand the consequences of vertical collaboration in transportation
from new angles.
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5.2 Future outlook

In this dissertation, we explored the complexity of vertical collaboration in multi-
mode and multi-carrier transportation systems with a focus on describing complex
system outcomes based on the underlying network structure. The conducted research
generated a number of interesting insights, but also opened up new directions for
future research. The final section comprises a discussion of potential extensions of
the work done in this dissertation as well as a number of more general future research
opportunities. Last but not least, we present a vision for collaborative transport
research.

The approach we took was overall quite generic, which proved very useful for the
scope of this dissertation, but might not answer all questions for specific collabora-
tive transport systems. Vertical collaboration in hinterland transport is for instance
only in a nascent stage and comes with significant operational complexity for trans-
shipment, which has not been addressed in this work. The customization to specific
contexts is an important step to strengthen the results of this dissertation and get
more hands-on insights. A key requirement is the availability of data. Customization
and refinement of the model can happen at the physical level, at the collaboration
level, and especially at the interface between the two. At the physical level, opera-
tional details of transshipments depending on the terminal infrastructure would allow
for more accurate results of the outcome in the transportation layer. Transshipment
operations are also subject to the collaboration between the involved parties. Dis-
tinguishing between different levels of collaboration, representing different levels of
information integration with different impact on the transshipment capability, would
strengthen the validity of the coupling between the layers. Variation in collaboration
types might also affect the disruption and propagation behaviour, which leaves po-
tential for a more accurate vulnerability analysis. Moreover, there can be multiple
carriers forming an alliance, as is happening in the airline and maritime shipping
industry. Multi-lateral collaborations might change the statics of the collaboration
network, but cannot explicitly be mapped in the current model.

Another interesting aspect of collaborative transport is decentrality. Not just with
the rise of Blockchain technology, decentral approaches are becoming more popu-
lar, be it in Tech, Finance, or Transportation. Collaborative transport is a parade
example of a decentrally managed system due to carriers being independent com-
panies. The complications and interdependencies imposed by collaborations in a
decentral system on the commercial, competitive, and political level would have a
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significant impact on the conditions under which collaborations are formed, which
could be worthwhile exploring. Last but not least, future research should look into
ways to protect collaborative transport systems against vulnerability at the collab-
orative level. In this dissertation we showed how structure influences vulnerability,
but vulnerability can also be reduced through investments in cyber security of car-
riers. The specific transportation-collaboration setup requires decision makers to
balance the protection of most important carriers with the mitigation of spreading
when allocating such investments.

The research directions outlined above contribute to our vision for collaborative trans-
port modelling, which comprise the development of a flexible model for accurate
prediction of synergies and vulnerability on both system and individual level under
changes to the system. The vision embraces the potentially competitive positioning
of players in the system and is easily customizable to different collaborative trans-
port context. It allows carriers to evaluate decisions on collaborations, collaboration
intensity, or adoption of information systems. Cities, ports, or terminals can use
it to evaluate investments in transshipment capability towards an integrated trans-
shipment hub. Moreover, policy makers can use it to evaluate the impact of policies
related to an integrated decentral transportation system. Our vision aims at provid-
ing a tool that leads to good decisions and enables efficient transportation with low
vulnerability, and ultimately low environmental footprint.
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Summary

Vertical collaboration in transportation involves the sequential execution of trans-
portation services from origin to destination. A sequence of services can involve differ-
ent carriers and different transport modes providing an integrated service. Through
vertical collaboration, a decentrally operated transportation system can reach a
higher level in terms of transport times, flexibility, resilience, and environmental foot-
print due to a more efficient use of existing resources and better responsiveness under
disruption to the service network. For instance, rail and barge services for intermodal
container transport in the seaport hinterland can be combined through vertical col-
laboration in a complementary way to increase the coverage of destinations, reduce
transport times, and thereby provide a competitive alternative to unimodal trucking.

However, the benefits of vertical collaboration do not come for free. First, deploying
successful collaborative transport requires close coordination and exchange of data
between the parties involved. For instance, collaborating carriers have to rely on each
other that information is provided on services, bookings, capacities, transshipments,
and that this information is correct. Collaboration therefore always comes with
interdependency, which creates a new risk of disruption at the collaborative level
that comes on top of the existing physical disruption risks (disruption of physical
services, e.g. through low water levels). If carriers fail to provide their partners and
involved terminals with the required data or the data is falsified, e.g. resulting from
a ransomware attack, transport chains become infeasible. Moreover, disruption at
the collaborative level can be caused by strategic misalignment in collaborations, e.g.
from a commercial, competitive, legislative, or trust perspective.

Second, vertical collaboration creates a new level of complexity emerging from the
network integration, the transshipments between transport modes and carriers along
a path with sequential services, as well as the collaboration and information exchange
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between autonomous carriers required to provide such services. This complexity is
difficult to capture at large scale with conventional notions and models used in trans-
portation research. Operational, technical, commercial, and organizational aspects of
collaborative transport systems are well researched at the individual and local level.
At scale, however, individual and local decisions lead to the emergence of a complex
adaptive system with non-trivial features. These features are difficult to trace back
to the individual level, which leads to low predictability of the impact of changes to
the system.

Expanding the knowledge on vulnerability induced by vertical collaboration is cru-
cial given the potentially severe impact of disruption, but complexity of the system
complicates such an analysis. Growing transport demand, constrained infrastructure
expansion, technological innovation, and increasing need for sustainable solutions
will further drive the relevance of collaboration and lead to even higher complexity.
This dissertation focused on presenting innovative modeling approaches based on the
science of complex networks that are able to capture the complexity of transportation
systems with vertical collaboration, and to use these to answer two core questions:

Complexity
How do changes in the characteristic of a transportation system emerge under
the adoption of vertical collaboration?

Vulnerability
Which system characteristics influence vulnerability at the collaborative level?

We presented a novel multi-layer network model and analysed it with a combination
of well-known metrics from network science and new methods developed ourselves.
Moreover, a mix of analytical computations and simulation-based methods is applied
to be able to establish general findings derived from random network classes, verify
them through simulation, and generate insights for real-world transportation systems
with data.

In Chapter 2, we analyzed changes in network structure under vertical integration
of multiple transport modes in the European network for hinterland container trans-
port. Hinterland connectivity of a port is mostly treated as a local indicator, de-
scribing the number of different hinterland locations served from a port via a direct
service. However, with multimodality being on the rise and transfer connections
becoming more feasible and common, the existing local notion of connectivity was
not sufficient anymore. This chapter extended the notion of hinterland connectiv-
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ity by non-local (network) and multimodal aspects, and used this notion to analyze
hinterland connectivity for the European hinterland transport network of scheduled
rail and barge services. The results showed that overall structural capability to per-
form hinterland transport assignments increases strongly as transfer connections and
multimodal routes are established. Moreover, non-local measures showed that ports
with poor local connectivity can still be well positioned within a vertically integrated
network if they have a connector role between the different network layers. Last but
not least, all ports benefit individually from multimodal integration, but some do
more than others.

In Chapter 3, we analyzed how the market structure of carriers and their position-
ing in the transport network drive vulnerability at the collaborative level of vertical
carrier collaboration. Therefore, the transportation network in our model is com-
plemented by a collaboration network representing the collaboration links between
carriers and the system impact of disruption to this new network layer is assessed.
Instead of demonstrating our results on particular instances of such multi-layer net-
works, we described a population of networks by its structural properties, capturing
the constraints imposed by collaborations in an analytically tractable way. The
analysis was complemented by a simulation study on less tractable, but more real-
istic networks to validate the analytical findings. The results indicate that market
structure, represented by disparity in carrier sizes, has a non-trivial impact on the
vulnerability of a collaborative transport network to targeted disruption at the col-
laborative level. Networks are most vulnerable if they have intermediate disparity in
carrier sizes, i.e. carriers are overall similarly sized, but there is some heterogeneity
with a moderate gap between few larger and many smaller carriers.

In Chapter 4, we studied the trade-off between synergies and vulnerability through
vertical collaboration. Since offering shared routes requires close alignment between
parties, collaborations are fueled by the exchange of data and the integration of
information systems, which creates dependencies through the risk of disruption in
the form of technical failure, cyber attacks, or organizational conflicts. Research has
shown that failure in interdependent networks can propagate and lead to a cascade
of failures, which casts doubt on the claim that more collaboration has a solely
positive impact on system performance. To answer this question, the network model
from the previous chapter is coupled with a model for propagation of cyber/false
data disruption, and the impact on network performance under varying levels of
collaborative connectivity is observed. Results show that increasing collaborative
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connectivity does not have a monotone effect on performance, but there is a maximum
at intermediate connectivity levels. Below this threshold level, more collaborations
have a mostly positive impact on performance, since unused synergy potential is
high while the risk of disruption causing a cascade is low. Above it, failure cascades
become larger and more likely while the marginal added synergies are diminishing.

In conclusion, we explored the complexity of vertical collaboration in multi-mode
and multi-carrier transportation systems. A particular focus was set on describing
complex system outcomes such as vulnerability based on the underlying network
structure. First, we developed novel models that serve as useful support tools for
decision making on the adoption of vertical collaboration in decentrally operated
transport networks. Second, we presented interesting results on the vulnerability of
transportation systems in general and the European hinterland transport network in
specific. Last but not least, the conducted research opens up new directions for the
analysis of multi-layered transportation systems using methods from the science of
complex networks.



Samenvatting

Bij verticale samenwerking in de transportsector draait het om de sequentiële uitvo-
ering van vervoersdiensten van herkomst naar bestemming. Een sequentie van di-
ensten kan verschillende vervoerders en verschillende vervoerswijzen omvatten die
een geïntegreerde dienst leveren. Via verticale samenwerking kan een decentraal
opererend transportsysteem een hoger niveau bereiken voor wat betreft transport-
tijden, flexibiliteit, veerkracht en milieuvoetafdruk dankzij efficiënter gebruik van
bestaande middelen en een beter reactievermogen bij verstoring van het diensten-
netwerk. Zo kunnen bijvoorbeeld spoor- en binnenvaartdiensten voor intermodaal
containertransport in het achterland van een zeehaven op aanvullende wijze worden
gecombineerd via verticale samenwerking om de dekking van bestemmingen uit te
breiden, transporttijden te verkorten en zodoende een concurrerend alternatief te
bieden voor unimodaal vrachtvervoer.

Aan de voordelen van verticale samenwerking zijn echter wel voorwaarden verbonden.
Ten eerste is voor succesvol coöperatief transport nauwe coördinatie en uitwisseling
van gegevens tussen de betrokken partijen nodig. Zo moeten samenwerkende ver-
voerders onderling erop kunnen rekenen dat informatie over diensten, boekingen, ca-
paciteiten en overladingen wordt verschaft, en dat deze informatie correct is. Samen-
werking gaat dus altijd gepaard met onderlinge afhankelijkheid, wat een nieuw risico
op verstoring op coöperatief niveau met zich meebrengt, naast de bestaande risico’s
van fysieke verstoring (verstoring van fysieke diensten, bijvoorbeeld door lage water-
standen). Als vervoerders verzuimen hun partners en betrokken terminals de vereiste
gegevens te verstrekken of de gegevens vervalst zijn, bijvoorbeeld als gevolg van een
ransomwareaanval, worden transportketens onuitvoerbaar. Bovendien kan verstor-
ing op coöperatief niveau worden veroorzaakt door onjuiste strategische afstemming
bij de samenwerking, bijvoorbeeld vanuit commercieel, concurrentie-, wetgevings- of
contractueel oogpunt.
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Ten tweede creëert verticale samenwerking een nieuw complexiteitsniveau dat voortkomt
uit netwerkintegratie, de overladingen tussen vervoerswijzen en vervoerders langs een
route met sequentiële diensten, alsook de samenwerking en informatie-uitwisseling
tussen onafhankelijke vervoerders die vereist zijn om dergelijke diensten te verlenen.
Het is moeilijk om deze complexiteit op grote schaal in goede banen te leiden met
conventionele noties en modellen die in het onderzoek op transportgebied worden
gebruikt. Operationele, technische, commerciële en organisatorische aspecten van
coöperatieve transportsystemen zijn goed onderzocht op individueel en lokaal niveau.
Op schaal leiden individuele en lokale besluiten echter tot het ontstaan van een com-
plex adaptief systeem met niet-triviale kenmerken. Deze kenmerken zijn moeilijk te
herleiden tot het individuele niveau, wat leidt tot slechte voorspelbaarheid van het
effect van veranderingen in het systeem.

Een betere kennis van de kwetsbaarheid die gepaard gaat met verticale samenwerking
is cruciaal, gezien het potentieel ernstige effect van verstoring, maar de complexiteit
van het systeem bemoeilijkt deze analyse. Toenemende vervoersvraag, beperkin-
gen aan uitbreiding van infrastructuur, technologische innovatie en de toenemende
noodzaak van duurzame oplossingen zullen samenwerking nog relevanter maken en
tot nog meer complexiteit leiden. Dit proefschrift is erop gericht innovatieve mod-
elleringsbenaderingen te presenteren op basis van de wetenschappelijke kennis over
complexe netwerken die in staat zijn met behulp van verticale samenwerking de com-
plexiteit van transportsystemen op te vangen, en deze te gebruiken om twee kernvra-
gen te beantwoorden:

Complexiteit
Hoe ontstaan veranderingen in de kenmerken van een transportsysteem bij inzet
van verticale samenwerking?

Kwetsbaarheid
Welke systeemkenmerken zijn van invloed op de kwetsbaarheid op coöperatief
niveau?

We hebben een nieuw meerlaags netwerkmodel gepresenteerd en geanalyseerd met een
combinatie van bekende meetgegevens uit de netwerkwetenschap en nieuwe, door on-
szelf ontwikkelde methoden. Bovendien wordt een mix van analytische berekeningen
en op simulatie gebaseerde methoden toegepast om algemene conclusies te kunnen
trekken die afkomstig zijn van willekeurige netwerkklassen, deze door middel van sim-
ulatie te verifiëren en met gegevens inzichten te genereren voor transportsystemen in
de echte wereld.
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In hoofdstuk 2 analyseren we veranderingen in de netwerkstructuur bij verticale inte-
gratie van meerdere vervoerswijzen in het Europese netwerk voor containertransport
in het achterland. De verbondenheid van een haven met het achterland wordt meestal
behandeld als een lokale indicator die aangeeft hoeveel verschillende locaties in het
achterland via een directe verbinding vanuit een haven worden bediend. Nu multi-
modaliteit in opkomst is en overslagverbindingen beter uitvoerbaar en gangbaarder
worden, is de bestaande notie van verbondenheid niet langer voldoende. In dit hoofd-
stuk wordt de notie van verbondenheid met het achterland verruimd met niet-lokale
(netwerk-) en multimodale aspecten, en wordt deze notie gebruikt om verbonden-
heid met het achterland voor het Europese achterlandvervoersnetwerk van geplande
spoor- en binnenvaartdiensten te analyseren. De resultaten laten zien dat de totale
structurele capaciteit om achterlandtransportopdrachten uit te voeren sterk toeneemt
naarmate overslagverbindingen en multimodale routes tot stand worden gebracht.
Niet-lokale maatregelen tonen bovendien dat havens met slechte lokale verbindingen
toch goed gepositioneerd kunnen zijn binnen een verticaal geïntegreerd netwerk als
ze een verbindende rol hebben tussen de verschillende netwerklagen. Tot slot blijkt
dat alle havens individueel profiteren van multimodale integratie, maar niet in gelijke
mate.

In hoofdstuk 3 analyseren we hoe de marktstructuur van vervoerders en hun posi-
tionering in het transportnetwerk van invloed zijn op de kwetsbaarheid op het coöper-
atieve niveau van verticale samenwerking tussen vervoerders. Daarom wordt het
transportnetwerk in ons model aangevuld met een coöperatief netwerk dat de samen-
werkingsverbanden tussen vervoerders vertegenwoordigt en wordt het systeemeffect
van verstoring van deze nieuwe netwerklaag onderzocht. In plaats van onze resultaten
te tonen voor specifieke gevallen van dergelijke meerlaagse netwerken, beschrijven we
een populatie van netwerken aan de hand van hun structurele eigenschappen, door de
beperkingen die door samenwerkingen worden opgelegd, op een analytische traceer-
bare wijze in kaart te brengen. De analyse wordt aangevuld door een simulatiestudie
over minder goed traceerbare, maar meer realistische netwerken om de analytische
bevindingen te valideren. De resultaten wijzen erop dat marktstructuur, gevormd
door ongelijkheid in de omvang van vervoerders, een niet-triviaal effect heeft op de
gevoeligheid van een coöperatief transportnetwerk voor gerichte verstoring op coöper-
atief niveau. Netwerken zijn het meest kwetsbaar als de ongelijkheid in de omvang
van vervoerders gemiddeld is, d.w.z. als de vervoerders ongeveer even groot zijn,
maar sprake is van enige heterogeniteit, met een beperkt onderscheid tussen enkele
grotere en talrijke kleinere vervoerders.



166

In hoofdstuk 4 onderzoeken we de wisselwerking tussen synergieën en kwetsbaarheid
door verticale integratie. Aangezien het aanbieden van gedeelde routes nauwe afstem-
ming tussen partijen vereist, worden samenwerkingen aangedreven door de uitwissel-
ing van gegevens en de integratie van informatiesystemen. Dit creëert afhankeli-
jkheden vanwege het risico op verstoring in de vorm van technische gebreken, cyber-
aanvallen of organisatorische conflicten. Uit onderzoek blijkt dat een verstoring in
netwerken met onderlinge afhankelijkheid zich kan verspreiden en een cascade-effect
teweeg kan brengen, wat twijfel zaait over de bewering dat meer samenwerking een
louter positief effect heeft op de systeemprestatie. Om deze vraag te beantwoorden
wordt het netwerkmodel van het vorige hoofdstuk gekoppeld aan een model voor
verspreiding van een verstoring door een cyberaanval of valse gegevens, en wordt het
effect op de netwerkprestatie bij verschillende niveaus van coöperatieve verbonden-
heid bekeken. De resultaten laten zien dat een toename van coöperatieve verbon-
denheid geen eenduidig effect op de prestatie heeft, maar dat er een maximum wordt
bereikt bij een gemiddeld niveau van verbondenheid. Onder dit drempelniveau heeft
toenemende samenwerking meestal een positief effect op de prestatie, aangezien het
onbenutte synergiepotentieel hoog is en het risico op verstoring met een cascade-
effect laag is. Boven dit niveau worden verstoringen met een cascade-effect groter en
waarschijnlijker, terwijl de marginale toegevoegde synergieën verminderen.

Kortom, we hebben de complexiteit van verticale samenwerking in multimodale trans-
portsystemen met meerdere vervoerders onderzocht. De focus lag op het beschri-
jven van resultaten van complexe systemen, zoals kwetsbaarheid op basis van de
onderliggende netwerkstructuur. Eerst hebben we nieuwe modellen ontwikkeld die
dienen als nuttige hulpmiddelen voor besluitvorming over de invoering van verti-
cale samenwerking in decentraal opererende transportnetwerken. Vervolgens hebben
we interessante resultaten gepresenteerd met betrekking tot de kwetsbaarheid van
transportsystemen in het algemeen en het Europese achterlandtransportnetwerk in
het bijzonder. Tot besluit opent het uitgevoerde onderzoek nieuwe richtingen voor
de analyse van meerlaagse transportsystemen door gebruik te maken van weten-
schapsmethoden op het gebied van complexe netwerken.
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