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Abstract 
 
Europe’s hinterland for container transport is a unique mix of ports of all sorts of sizes and 
large economic areas served by a competitive mix of truck, rail, and barge operators. The ports 
establish a certain hierarchy among themselves by means of the number and type of ships or 
trains leaving or departing to certain destinations, the type of goods they handle, and the relative 
proximity of demand. This hierarchy can be classified as a network structure which can be 
measured with a vast number of complex network measures. The network structure can be 
changing over time because of, among others, competition between service operators, 
investments in infrastructure by (port) authorities, regulations and policies, and trade patterns. 
 

This thesis researches one of the variables which can be of influence on the network 
structure: the throughput time of services on specific routes. The service throughput time is the 
average of the travel time and expected waiting time of all services operating between two 
cities. The travel time and the frequency between two cities are two main decision factors, next 
to price, for service operators and shippers to choose a certain route. As there is an absence of 
research on the influence of time on the network structure, this thesis aims to fill this gap by 
establishing a link between the change in service throughput time and the change in network 
structure of container transport in the European hinterland. As the characteristics of the two 
modalities which are used in the hinterland, rail and barge transport, are different, the network 
is also split up in order to observe differences between them.  
 

 
The network for barge and rail transport in 2018. 

For this purpose, a longitudinal dataset of three years (2016-2018) covering over 90 percent 
of all scheduled train and barge services in the European hinterland is used. Complex network 
measures used in this research are: hierarchy, assortativity, shortest paths, gamma index, 
centralities, rich-club index, Gini-index, clustering, nearest neighbour degree, and modularity. 
The network measures are extracted with several (statistical) programs: Gephi, Tulip, R 
(brainGraph and tnet packages), and Python (NetworkX package). In order to establish the link 
between the changes in service throughput time and network measures, IBM SPSS is used for 
calculating correlations and performing linear regression analyses. 
 

Over the course of three years the complete hinterland network with both rail and barge 
connections shows a trend towards an increasing importance around high degree nodes. These 
high degree nodes act as hubs in a hub-and-spoke structured network for connecting 
communities consisting of smaller degree nodes. These communities are geographically 
dispersed over Europe and connected by certain corridors, linkable to the TEN-T corridors. 
The use of service throughput time as link weight has showed faster shortest paths exist than 
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the one crossing the least number of nodes. Correlations between the network measures and 
the service throughput time are strong and cohere with the line of thought for why measures 
are moving in a certain direction. None of the correlations or squared R values are however 
significant on a 95 percent confidence level for the complete network. So, while the relations 
between the service throughput time and the network measures are seemingly logical, it cannot 
be statistically established whether the service throughput time is a cause for the network 
structure changes. 
 

Rail transport in the European hinterland has a relativity stable average service throughput 
time, but changes in the network structure do however take place. There seems to be a 
development in the use of intermediary cities with a significant number of connections; yet not 
as much as the large hubs have. This can be cities which are positioned on the corridors and 
act as entry points for hinterland destinations receiving and sending containers through a 
corridor. For the barge network the corridor structure was already in place and is dominated by 
primarily Antwerp and Rotterdam. The extra services included in the database mainly go from 
these two hubs to cities along the Rhine river in Germany. These relative long routes for the 
new services explain the significant changes in average service throughput time. Correlations 
show service throughput time is correlating with network structure changes around Antwerp, 
Rotterdam, and some other small cities. The offering of extra services here, not necessarily fast 
or frequent, on already existing routes increases the centrality. 
 

It has proved to be useful to split the network for the modalities used in the European 
hinterland since the average service throughput time is showing different network structure 
developments for barge and rail. Eventually, service throughput time is however not able to 
statistically prove it is of influence in changing the network structure. The main reason for the 
lack of evidence is probably the limited timespan of the data, as the literature has showed a 
relationship between time and network structure changes is highly likely. 
 

The influence of time of the network structure is of practical relevance for ports designing 
new (trans)port policies, initiating large infrastructure projects, and attracting service providers 
seeking access to certain hinterlands. A service provider could also benefit from the 
information how a transport network changes if a faster or more frequent service is offered. 
For rail operators the practical relevance is more specific on what throughput time is needed to 
establish a corridor, and for barge operators it is mainly how they can be more attractive than 
using a truck on a short distance range to cities with a limited number of connections. 
 

Further research attention should be directed to transferring the observation made in the 
European hinterland to other geographical areas, extending the longitude of the observations 
in order to increase the statistical significance of service throughput time, and developing more 
specific measures for hinterland transport.  
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1 Introduction 
 
1.1 Research Context 
 
As hubs for around 80 percent of traded goods in volume worldwide, and over 70 percent of 
value (United Nations, 2015), deep-sea ports have received considerable attention from 
researchers over the past decades (see Pallis, Vitsounis & De Langen (2010) for an overview). 
Over the course of these decades, researchers have made more use of mathematical modelling 
and sophisticated analytics tools, resulting in the capability to analyse larger transportation 
networks (Woo, Pettit, Kwak & Beresford, 2011). This is essential with the growing 
complexity of the port community (Martin & Thomas, 2001) and their increasing role in 
facilitating global trade (Ng & Lui, 2014). In Europe alone, the main ports are handling close 
to 15 percent more tons of goods in 2015 compared to 2002 (Eurostat, 2017a). And although 
the transport sector experienced a large set-back in the aftermath of the financial crisis in 2008, 
the growth expectations remain positive. 
 

In the eight biggest ports in Europe, over 55 percent of all containers measured in twenty-
foot equivalent units are transported to the hinterland by road, rail or barge (although 
Bremerhaven is an exception with 60.8 percent sea-sea transhipment) (Notteboom, 2010). 
Rotterdam reaches 74.6 percent of hinterland transport, and Antwerp even the 81.1 percent. 
Moving goods by road is still the most common way of hinterland transport in the European 
Union with 75.8 percent of the modal split (Eurostat, 2015). Rail transport reached 17.9 percent 
in 2015, and barge transportation over inland waterways accounted for 6.3 percent of hinterland 
transport. 
 

The development of hinterland facilities has been of particular interest for some researchers 
over the past years (Ng et al., 2014). From the period 1980-1994, there has been a trend of 
concentration and formation of multi-port gateways and hinterland development (Notteboom, 
1997). The prediction is port concentration will eventually reach a limit, and future 
development in European container transport will predominantly be determined by changes in 
hinterland dynamics and government (trans)port policies. The prediction was right, the limit is 
reached and there is increasing emphasis on the role of effective hinterland distribution 
(Notteboom, 2010). The large and highly concentrated ports enjoy the benefit of economies of 
scale; larger container volumes simplify the establishment of a good network for the hinterland, 
which results in even more inflow. However, with the growing volume of containers, large 
ports become congested and unable to handle the constantly increasing amount of flow. New 
hinterland transportation links are developed because of an increasing number of containers to 
these ports. This can be new services from transport providers, but also new canals, railways, 
and terminals resulting from government policies and cities trying to establish themselves as 
an inland hub. An example is the focus on rail transport from the Port of Rotterdam. Since 
shipping by barge has a limited market reach, and roads are congested with polluting trucks, 
the port authority is assisting railway operators in establishing new services to for example 
Germany (Betuwelijn) and Genoa, Northern-Italy (Van Klink & Van den Berg, 1998).  
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The transportation possibilities offered by service operators result in a network for 
container transport throughout the hinterland of Europe. Just like the Atlantic shipping network 
(Ducruet, Rozenblat, & Zaidi, 2010), this network has the characteristics of a hub and spoke 
structure (De Langen, Lases Figueroa, Van Donselaar, & Bozuwa, 2017). As indicated by the 
research of Notteboom (2010), the European hinterland network is under change over time. 
Actions taken by operators and other actors in the network will have an impact on how the 
network evolves. An example is the deepening of the Scheldt river, which links the port of 
Antwerp to the North Sea. Dredging the river did result in a greater market share for the port 
of Antwerp (Veldman, Bückmann, & Saitua, 2005). This eventually had an impact on the 
number of containers transported to the hinterland. Other examples are the promotion of Venlo 
as a hub for inland transport (Raimbault, Jacobs, & Van Dongen, 2016), resulting in an increase 
in rail connections from Rotterdam to Venlo and from Venlo onwards, and an European-wide 
study proving the effect of developing new services in a hub is of positive influence on the 
hub’s strength (intermodal connectivity) in the network (De Langen & Sharypova, 2013). 
 

The three examples above are showing changes by actors do indeed have an effect on the 
network over time. They influence the services offered and the way containers flow to their 
destinations. Furthermore, a network having a hub and spoke structure such as the European 
container network can be described by certain measures. These are interesting because they 
help understand the strengths and weaknesses of a network and are able to track changes over 
time in a structured way. This is an extension to merely looking at the effects of a change such 
as the examples in the previous paragraph. These measures for network structures have 
primarily been studied at a higher level than the European hinterland. On a more global scale, 
Xu, Li, Shi, Zhang & Jiang (2015) looked at the traffic development, dominance, centrality, 
and vulnerability of 17 global shipping regions. They concluded the node attributes of a 
shipping region are not necessarily changing with what would be expected for the increase or 
decrease in traffic amount. This however differs per region. For the Southern African port 
system, the economic growth, increased political stability, and regional trade co-operation 
resulted in an increase of traffic (Fraser, Notteboom, & Ducruet, 2016). In turn, this resulted in 
a more central position of Southern African ports in the global shipping network. Though not 
all developments or measures taken by port authorities are resulting in a change in the port’s 
or region’s node attributes. Port specialisation and diversification have little influence on node 
properties such as betweenness centrality, degree centrality, and the clustering coefficient, but 
do have a big impact on link properties, such as traffic type and tonnage, due to the absence of 
a physical infrastructure on the sea (Ducruet, 2017). 
 

On a European level, research on the network structure of container transport over time is 
limited. One of the only examples is the study by De Langen & Sharypova (2013) mentioned 
earlier, but their only measure is the intermodal connectivity of a node. Hence, it is of interest 
to define the European hinterland network for container transport with a set of measures and 
see its development over time. Additionally, developments over time are interesting if they can 
be explained. In other studies, researchers have looked at the effects of capacity (Laxe, Seoane, 
& Montes, 2012), distance (Guerrero, 2014), and volume (De Langen, Nijdam, & Van der 
Horst, 2007) between nodes and discovered relations between these link properties and the 
network structure. Two interesting attributes in the dataset which is used for this research, are 
the travel time and the travel frequency between nodes. Both of them are to date not used to 
explain changes in network structures for both global and hinterland networks.  



 
 

 3 

Travel time and travel frequency are however, in addition to the geographical location of 
demand regions, of importance to the structure of transportation networks (Ducruet & Lugo, 
2013). Transport time accounts for 10 percent, and frequency for 4 percent, in the decision 
making for hinterland container transport (the major decision factor is cost with 71 percent) 
(Meers, Macharis, Vermeiren, & Van Lier, 2017). Furthermore, cost are influenced by travel 
frequency and travel time through the exploitation of economies of scale (Van der Horst & De 
Langen, 2008), thus making the travel time and travel frequency of even greater importance in 
the decision-making process for hinterland container transport.  
 
1.2 Problem Definition 
 
It is of interest for researchers on transport networks to know how a network is shaped when 
travel time and travel frequency are varying, because both attributes are of influence on why 
operators choose for a certain hinterland route. So, it helps to explain how the decisions of 
operators to create a service between two nodes is of influence of the change of the network 
structure over time. Next to operators, other actors in the network are probably to some extent 
informed about why operators choose a certain route. These actors, like port authorities, might 
have the ability to alter their environment in order to attract more or faster services, and thus 
also have an influence on the shaping of the network. 
 

Research on what the impact of travel time and travel frequency is on the network structure 
over time is however absent. In order to combine the two attributes in the dataset, the measure 
of service throughput time is used. It adds the travel time to the average waiting time a customer 
would have based on the number of departures per week. The average of all links between two 
nodes is the average throughput time of services. This measure is a link weight and can be used 
to establish a level of connectivity in the network, and the connectivity of a specific node. The 
idea of using service throughput time as a link weight in the network is obtained from Ducruet 
et al. (2010). One of the suggestions they make for further improvements in using complex 
network analysis tools for transport systems, is using traffic frequency as a link weight instead 
of the vessel capacity they have used. In this way, the influence of a change in travel time or 
the travel frequency on a certain link can be measured. As the characteristics between barge 
and rail transport are different and have their influence on the modal choice preference (Meers 
et al., 2017), the analysis on these two modalities must be split up in order to sketch a more 
precise image of why network structures are changing over time. 
 
1.3 Research Objective 
 
With research on weighing edges in networks with variables such as capacity, distance, and 
volume, the absence of time as a link weight measure poses a new opportunity to explore how 
network structure changes in the European hinterland can be explained. This is of importance 
because travel time and travel frequency are decision factors for actors in the network, which 
will influence the shaping of the network. The master thesis aims to fill part of this research 
gap, by applying complex network analysis tools to longitudinal data of rail and barge services 
for containers in the European hinterland. Afterwards there is explored if differences in the 
network can be explained by a change in service throughput time and if the mode of transport 
is of influence on the service throughput time. The conclusions from this thesis can be useful 
for explaining why a hinterland transportation network is changing if travel time or travel 
frequency are varying. 
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So, the objective is: 
 

To explain if network structure changes of container transport in the hinterland of Europe 
can be attributed to changes in service throughput time and the influence of the modality 
on the service throughput, by applying complex network measures to longitudinal data on 
rail and barge services. 

 

 
Figure 1: Conceptual model 

 
1.4 Research Questions 
 
The dataset contains snapshots from three years: 2016, 2017, and 2018. Service throughput 
time is used as a link weight on all three datasets in order to observe differences between them. 
Attention is paid to the changes in the network structure and to the attributes belonging to 
nodes. If a change is observed, a study is made on whether the influence of a change in service 
throughput time can be causing this. The possible influence of the transport modality is studied 
afterwards. Here the focus is on whether there is a difference in the impact of service 
throughput time across modalities. This results in the following three research questions: 
 

1. What are the differences in the network structures and node attributes for the three 
consecutive years of data? 

2. How is the service throughput time influencing possible changes in the networks? 
3. How does the influence of the service throughput time differ per mode of transport? 

 
1.5 Outline of the Thesis 
 
This thesis continues with an exploration of theory on network structures in transportation. 
Next, the European network structure for container transport and the way hinterland 
transportation is performed in Europe are described. The influence of travel time, travel 
frequency, and the transport modality are explored in the last part of the literature review. The 
research methodology describes the structure of the dataset and the operationalisation of the 
variables from the conceptual model. A section with results is structured in the order of the 
three research questions: the network changes are described; the influence of service 
throughput time is measured; and the influence of service throughput time is split up per 
modality. The thesis finishes with the conclusions, a discussion of the results, and 
recommendations for further research.  
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2 Exploration of Theory 
 
This chapter aims to give insight into the available literature on both network analysis and the 
hinterland network present in Europe. The available literature on the two independent 
variables, service throughput time and the differences per transport modality, are explored as 
well. 
 
2.1 Background on Network Analysis in Transportation 
 
Until the 1990s, graph theory was the primary way of studying transport networks (Ducruet & 
Lugo, 2013). This mathematical approach considers networks existing of nodes (i.e., cities) 
and links (also called edges, i.e., a waterway between two nodes). Edges can go one way, 
directed networks, or both ways, undirected networks. Nodes and links can also have weights 
placed to them such as capacity or time; this is called a weighted graph. The research focus 
was mainly on roads, railways, and canals, because these means of transport are running over 
fixed routes. This in contrary to maritime and air transport structures, who are almost not 
dependent on spatial factors (although maritime transport is somewhat constrained by 
coastlines). In order to establish a network for maritime or air transport, data of scheduled 
services or movements of ships or planes is required. This data was not available or extensive 
enough for a long time, and thus analysis on these two types of transport was lacking. In the 
late 1990s, more complex network measures were developed, introducing the concepts of 
small-world and scale-free networks. These two types of networks are often seen in 
transportation networks and give an intuitive abstraction of the real world. 
 

 
Figure 2: Complex networks. From Huang, Sun, & Lin (2005). 

Networks in which nodes are highly clustered with a short width, and therefore have a high 
density of edges, are defined by Watts and Strogatz (1998) as small-world networks (figure 
2a). There is a high chance two randomly selected nodes are direct neighbours of each other or 
require only few other nodes to reach many other nodes in the network. In a scale-free network 
(figure 2b), many nodes have few connections, and few nodes have many connections 
(Barabasi & Albert, 1999). This results in a disassortative network in which nodes with few 
connections are more likely to connect with highly connected nodes. 
 

Although complex network measures are nowadays often used, not all transportation 
networks are suitable for this type of analysis because they do not hold the properties of a 
small-world or scale-free network. Therefore, researchers keep using the set of measures the 
original graph theory holds. These measures tell more about the local properties of a node, and 
less about the complete network. The definition used in this paragraph are taken from Demšar, 
Špatenková, & Virrantaus (2008). Centrality measures are values describing how important a 
node is in the network. The most common used types of centrality are closeness, betweenness, 
and degree. The closeness centrality indicates what the shortest distance of a specific node is 
to all other nodes in the network. Betweenness centrality is number of shortest paths connecting 
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every pair of nodes passing through a certain node. The degree of a node is the total number of 
neighbours. The importance of a specific node it its direct network environment can be 
measured by the clustering coefficient. It can be calculated by summing all the edges between 
a certain node and all its neighbour nodes divided by all possible edges in the same 
neighbourhood of the specific node. These and other measures will be discussed in more detail 
in the methodology chapter. 
 
2.2 Europe’s Hinterland 
 
In order to understand how or why a network is developing itself, knowledge about the network 
studied is required. The container transportation market by rail is for instance different in the 
US than Europe because railroads are owned by governments in the latter. 
 
2.2.1 The European container network 
Europe’s container transportation network is a unique mix of ports of different sizes and types. 
The large economic hinterland, plus the relative proximity of competitors (Wang & Cullinane, 
2006) results in a certain competition and hierarchy among the ports. European container port 
competition is, among others, studied by Marcadon (1999), Notteboom (2007), Veldman & 
Bückmann (2003), and Veldman et al. (2005). In one of the only longitudinal studies performed 
on the European container network, Notteboom (1997) concluded the containerisation of 
transport is not leading to further concentration of ports. Instead, he expected traffic flows to 
decentralise under the influence of competition between large consortia, the development of 
hinterland links, and policies from (port) authorities and governments. In his follow-up 
research in 2010, it became evident this was indeed happening. Large market players are being 
more orientated to the complete hinterland network and try to exploit their economies of scale 
on their own or by cooperating with other players. However, this was not the case for barge 
operators, they rather stay independent and not cooperate with other barge services to exploit 
the economies of scale (Van der Horst & De Langen, 2008). 
 

 
Figure 3: Overlapping hinterland markets through corridor-based container flows. From Notteboom & Rodrigue (2005). 

So only economies of scale influencing cost factors are not sufficient to explain the flows 
of containerised traffic through Europe. Service quality effects, connectivity to hinterland 
markets, and synchromodal bundling effects result in forces pushing container flows to certain 
gateway ports and not to necessarily to the closest gateway (Notteboom, 2010). This type of 
port development in Europe, called port regionalisation (centralisation in network terms), can 
be drawn schematically as shown in figure 3. The activities normally taking place in the port 
are decentralised, but the import or export of goods is running through the deep-sea ports with 
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a high hinterland connectivity. The formation of corridors is creating discontinuous hinterlands 
(as in figure 3). Typically, the high-volume corridors offer a better balance in lead time, price, 
and distance compared to the established modes of inland transport (Notteboom, 2008). The 
size of the resulting hinterland is depending on the frequency of the services over the corridor 
and the competitiveness of the operators. A drawback of this development is hinterland areas 
are depending on the competitive offering of services from operators. An unpredictable and 
highly competitive marketplace for intermodal transport is thus not leading to stable hinterland 
areas. 
 
2.2.2 The influence of a modality 
There seems to be a logical relationship between physical distance and the travel frequency: 
when the first is increasing, the latter is decreasing. This is also the case for intermodal transport 
in Europe where differences are observed if the analysis is split up for barge and rail services 
(figure 4) (De Langen et al., 2017). The travel frequency per week for transport by barge drops 
from an average of four per connection with a distance of less than 200 km, to two per 
connection with a distance between 400-600 km. No barge connections exist for distances over 
600 km. Travel frequency per week by rail is also decreasing with distance, but only from an 
average of six per connection with a distance of less than 200 km, to four per connection with 
distances over 1200 km. 
 

 
Figure 4: Frequencies and distances for rail and barge services. From: De Langen et al. (2017). 

A prerequisite for effective waterway transport by barge is, besides the demand, the 
availability of infrastructure. This is of course also the case in rail transport, but a railway is 
often easier to construct than a canal. The length of waterways used for barge transport in 
Europe is about 52,000 km (Konings, 2009). Half of this is network can be found in France 
(14,900 km), Germany (7,500 km), The Netherlands (5,000 km), and Belgium (1,570 km). 
This explains why this modality is of such popularity in these regions.  

 
De Langen et al. (2017) agree on several concluding points after their analysis. First, barge 

and rail services are complementing each other (i.e. the number of pairs with the same origin 
and destination is limited). Barge services are mainly used for short distances and rail services 
for longer distances. They are however both competing with road haulage for short (barge) and 
long (rail) distances (Meers et al., 2017). Second, if there is more competition between service 
providers at a certain port, this may lower the distance of the shortest rail service. Third, the 
transportation distances are often smaller than they assumed to be economically viable, 
especially between ports and over mountain crossings. Fourth, inland-to-inland services by 
barge rarely exist, the focus is more on deep-sea port to hinterland connections. The large train 
operators primarily specialise in port to hinterland connections, but inland-to-inland services 
are offered as well (although no service provider is specialised in these connections by rail). 
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2.2.3 Changes in network structure 
In order to find evidence for changes in the hinterland, measures and statistical methods to suit 
this case are required. Examples are derived from studies looking at networks on a more global 
level because research on network structure changes in hinterlands is lacking (see table 1 for 
the complete overview). In a study on the maritime network structure of the Atlantic, the 
maritime degree (i.e., the number of direct connections a node has) is plotted against the 
cumulative number of nodes (Ducruet et al., 2010). By applying the power-law rule on the 
slope of the line (slope > 1), the Atlantic maritime network proves to show scale-free 
properties. The slope was however changing and getting closer to 1 between the two snapshots 
of 1996 and 2006; indicating the network was becoming less centralised. In the same study the 
density of the network was measured by comparing the observed connectivity with the optimal 
connectivity. This interconnectivity measure can also be applied on one node, indicating  
 

Author Area Network Longitude Measure 
Fleming et al. (1994) US Air, maritime 1 year Centrality, intermediacy 
     

Guimera et al. (2005) World Air 1 year Centrality, hierarchy, 
communities, shortest path 

     
Choi et al. (2006) World Internet, air 1 year Centrality 
     

Sales-Pardo et al. (2007) World Air 1 year  Hierarchy, communities, 
clustering 

Ducruet et al. (2009) Europe Road, rail, river, 
short-sea 1 year Gini-index, diversity 

     

Ducruet et al. (2010) Atlantic Maritime 1996 & 2008 Centrality, hierarchy, 
clustering, gamma index  

     
Lam et al. (2011) World Maritime 1995-2006 Centrality 
     
Parshani et al. (2011) World Air, maritime 1 year Centrality, clustering 
     
Laxe et al. (2012) World Maritime 2008-2010 Centrality, vulnerability 
     
Ducruet et al. (2012) World Maritime 1 year Degree, communities 
     

Fraser et al. (2016) South-Africa Maritime 1996, 2006, 
2011 Centrality, eccentricity 

     
Wang et al. (2016) World Maritime 1 year Centrality 
     
Ciliberto et al. (2017) US Air 1990-2015 Centrality 
     

Calatayud et al. (2017) Americas Maritime 1 year 
Centrality, gamma index, 

clustering, diameter, 
shortest path 

     

Ducruet (2017) World Maritime 1977-2008 
Centrality, gamma index 
clustering, assortativity, 

rich-club 
     
Liu et al. (2018) World Maritime 1 year Centrality, hierarchy 

Table 1: Overview of network measures used in other publications.  
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whether it is well connected to its direct neighbours. A third method Ducruet et al. (2010) are 
using for gathering evidence of the changes in the network, is by applying the Gini-index (a 
measure of equality/inequality) on the distribution of traffic on nodes and edges. Through an 
observation of a decrease in the Gini-index, they conclude there is decrease in hierarchy and 
therefore greater complexity in the network. 
 

The maritime degree of a node says something about the importance of a node, though not 
anything about its role in the network. Guimera, Mossa, Turtschi & Amaral (2005) use 
betweenness centrality, the number of shortest paths connecting any two cities through a 
specific node, for the air transportation network. Nodes with a small degree and large centrality 
are considered outliers since other complex networks do not behave like this according to 
Guimera et al. These outliers are creating a network looking like two communities only 
connected through a specific node, something which was first observed in air transportation. 
The combination of these two measures can thus be used to identify communities in a network 
and the importance of nodes in those situations. It is often referred to as the connectivity of a 
node (Xu et al., 2015). An increase of centrality on its own could mean the node is acting as an 
important place in the integration process of distant hubs (Seoane, Laxe, & Montes, 2013). 
 

In recent research the assortativity coefficient and the rich-club coefficient are used to 
measure how large nodes connect with each other over time in the global shipping network 
(Ducruet, 2017). This gives insight on the centrality of the network through the connectivity of 
both large and small nodes. The assortativity coefficient is based on the Pearson correlation 
between the degree centrality of two connected nodes and indicates to what extent nodes with 
comparable connectivity connect with each other (Ducruet & Lugo, 2013). The rich-club 
coefficient is the ratio between the gamma index of the entire network (the reason why it 
sometimes referred to as the rich-club index), and the gamma index of the nodes connected 
with at least a certain number of nodes (this threshold is explained later on). The gamma index 
is a measure between zero and one and considers the relation between the observed links and 
the number of possible links. The rich-club index can be used to tell how well nodes with a 
certain degree are connected with each other. A decreasing gamma index means the network 
is becoming more simple and central, so larger nodes connect more with smaller nodes. A 
decreasing rich-club index indicates the most connected ports become less connected with each 
other. 
 
2.3 Using Service Throughput Time as Link Weight 
 
The economies of scale generated by the large European ports enable them to operate high 
frequency intermodal transport to many hinterland destinations (Van Klink & Van den Berg, 
1998). The case of a new rail shuttle service between Rotterdam and Northern Italy 
demonstrates a higher travel frequency promotes a larger flow of container traffic between 
these regions and lowers the number of containers handled by Italian ports (Van Klink & Van 
den Berg, 1998). How this influences the network structure is not known, but since higher 
container volumes in hubs enable them to strengthen their competitive position (Rodrigue, 
Debrie, Fremont, & Gouvernal, 2010), it is probable the network structure surrounding the 
Northern Italy rail destinations is affected. There is also a direct link between travel frequency 
and the inland service area of a port: increasing the travel frequency by rail or barge shuttle 
services has a positive impact on the service area of a specific hinterland area (Notteboom, 
2008). With a larger flow of containers to a hinterland nub, is it economically viable to offer 
extra services from a hub onwards, thus changing the connectivity of the entire area.  
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Indicators of connectivity and accessibility prove to be useful in an assessment of the 
European deep-sea ports and their intermodal transportation options to the hinterland (De 
Langen & Sharypova, 2013). Connectivity is a network measure indicating the possibility to 
reach all nodes from all other nodes, and accessibility is a node measure indicating the 
possibility to reach all or certain nodes form a specific node. While the research is limited to 
26 ports, it does indicate an increase in travel frequency of rail and barge strengthens the 
connectivity of specific nodes and is altering the overall connectivity of the network. No 
connection to measures indicating the network structure are made however. The same goes for 
the influence of travel time on the choice of modality. Research is widely available (see Reis 
(2014) for an overview) and known to influence the connectivity of a node (e.g., the shuttle 
service Rotterdam-Northern Italy), but no connection to the network structure is made. 
However, for both shippers and operators, it is an important variable being considered when 
choosing between road or rail and barge transport to the hinterland (Reis, 2014). 

 
The time dimension has proven to be of importance to implement in intermodal transport 

models (Crainic & Kim, 2007). First because the time dimension is a requirement for the 
effective scheduling, routing, and coordination of assets. Second, the wide range of time-
factors (dwell-times, frequencies, transport times, number of stops) can result in significant 
different outcomes of expected service quality when the network is arranged in a different way 
(Ypsilantis, 2016). As service quality is often associated with, among others, frequency of 
service (Li & Tayur, 2005) in the decision for a certain carrier (Crevier, Cordeau, & Savard, 
2012), it is of importance to be considered. Operators should therefore make strategic use of 
the time dimension for increasing their competitiveness.  
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3 Research Methodology 
 
In this chapter the dataset for this research is presented and methods for cleaning and making 
the dataset useful for analysis are described. In the second part, the dependent and independent 
variables from the conceptual model are operationalised. 
 
3.1 Structure of the Dataset 
 
Ecorys is a leading international research and consultancy company aiming primarily at 
handling important societal challenges. Established in 1929, it has an extensive history of 
basing their advice on sound research. Clients are, among others, the European Commission, 
the World Bank, airports, hospitals, universities, national and local governments, and a long 
list of private companies such as KPN Telecom and Royal HaskoningDHV. The main areas 
which Ecorys operates in are: Economic Growth, Social Affairs & Health, Natural Resources, 
Regions & Cities, Public Sector Reform, Security & Justice, and Transport & Infrastructure. 
 

A Transport & Infrastructure project Ecorys has initiated in 2013 is the development of a 
tool for scheduling intermodal container transport in Europe: Intermodal Links. The database 
contains around 150 intermodal operators, carrying out 25,000 weekly departures by rail, 
barge, Roll-on Roll-off ferries, and short-sea shipping between 1,000 terminals. Companies 
are, after payment, able to plan their transport through this tool, or even integrate it within their 
enterprise system. The goal is to make intermodal transport more efficient in terms of time and 
costs. Another group of Intermodal Links-users are port authorities, local governments, and 
terminal operators. Since the database with service connections is updated continuously, this 
group of users can track if, and how, the interest of service operators, and thus the shippers as 
well, is changing. The port authority, local government, or terminal operator can adapt its 
strategy to become more competitive in this changing environment. 
 

The dataset provided by Ecorys contains snapshots of three consecutive years, 2016, 2017, 
and 2018. A summary of the development over the three years in given in table 2 (excluding 
short-sea shipping and ferries). An entry is the connection between two terminals, listed as 
country-city-terminal, by a certain service provider, with a specific mode of transport, 
including the departure days in a week and the travel time in days. The specific modes of 
transport are railway and inland barge shipping. The top five connected cities for 2016 are 
presented in table 3 (excluding short-sea shipping and ferries). 
 

Descriptive 2016 2017 2018 
Rail connections 2,126 2,171 2,111 
Barge connections 567 734 808 
Number of countries 24 24 25 
Number of cities 324 334 330 
Number of terminals 443 485 481 
Number of operators 102 112 116 
Unique directional links between cities 1,648 1,656 1,673 
Average departures per week rail 4.8 4.8 4.7 
Average departures per week barge 3.2 3.1 2.8 
Average travel time rail [days] 1.8 1.9 1.9 
Average travel time barge [days] 2.4 2.6 2.5 
Average distance rail [km] 536 543 651 
Average distance barge [km] 198 368 201 

Table 2: Database descriptives over time (excluding short-sea shipping and ferries). 
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Country and city of 
origin 

Weekly 
outgoing 

connections 

Weekly incoming 
connections 

Connected unique 
countries * 

Connected 
unique cities ** 

Netherlands – Rotterdam 1,011 994 9 103 
Germany – Hamburg 842 781 9 64 
Belgium – Antwerp 577 540 12 90 
Italy – Milan 447 471 8 42 
Germany – Bremerhaven 365 376 5 40 

Table 3: The top five connected terminals in 2016 (excluding short-sea shipping and ferries). *Max:24, **Max: 324. 

Several modifications are made to the dataset in order to make it suitable for this research. 
The short-sea shipping links are removed from the database for three reasons. First, the focus 
of this research is on intermodal hinterland transport and short-sea shipping is not part of this 
in most definitions (De Langen et al., 2017). Second, the short-sea shipping connections 
include feeder services, but these are not stable on the service schedules provided. Third, inter-
continental container vessels with multiple calls in Europe are not included in the database. 
Out of all the entries, approximately 500 entries contain the input “Terminal not specified” (for 
2016 and 2017, this issue was fixed in 2018). Since the research will focus on connection 
between cities, and not terminals, this does not pose a problem. However, when the data is 
aggregated on a city level, some connections within one city arise. These three entries are 
removed from the dataset in 2016. 
 

Next, the services running on different days of the week with the same origin and 
destination, and provider are merged. Sometimes services are registered as two separate 
services running on different days a week but are the same from a customer perspective. An 
example is a service with a travel time of four days leaving on Monday and Friday: the 
shipment leaving on Monday will arrive on Thursday, but the service on Friday will arrive on 
Tuesday since most services do not operate on Sundays. The travel time is therefore recorded 
as five instead of four days while it is actually the same service. This is solved by averaging 
the travel time of the two separate services. The last modification is the merging of services 
with the same origin and destination, operator, modality, frequency per week, and days of the 
week in service. This aggregates the calls a service provider makes to multiple terminals within 
one city on the same service. It is for instance rational for a barge service from Rotterdam to 
Duisburg to load its ship with containers from multiple terminals located in Rotterdam. These 
are registered as separate services but there is still only one ship sailing between the two cities 
for the particular service. 
 

Modifications 2016 [remaining] 2017 [remaining]  2018 [remaining] 
Raw dataset 12,968 [100%] 14,400 [100%] 15,876 [100%] 
1 Short-sea shipping - 6,385 [50.8%] - 7,558 [47.5%] - 8,878 [44.1%] 
2 Within city connections - 3 [50.7%] 0 [47.5%] - 16 [44.1%] 
3 Service aggregation 1 - 2,118 [34.4%] - 2,226 [32.1%] - 1,989 [31.5%] 
4 Service aggregation 2 - 1,769 [20.8%] - 1,711 [20.2%] - 2,074 [18.4%] 
Final dataset   2,693 [20.8%] 2,905 [20.2%] 2,919 [18.4%] 

Table 4: Cleaning the dataset. 

The dataset is continuously updated by employees from Ecorys to guarantee the data quality 
demanded by their customers: e.g. the port authorities of Zeebrugge, Amsterdam and 
Rotterdam, Zeeland Seaports, and Kombi-Terminal Ludwigshafen. By experience Ecorys 
knows in which period of the year service providers change their schedules. The new schedules 
are looked-up on the websites of the service providers, or the service providers supply the 
schedules themselves. It is not known what percentage of the total volume transported is done 
through these scheduled links (i.e., the volume over unscheduled links is not known as well), 
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but Ecorys does estimate its dataset contains over 90 percent of all scheduled services in 
Western Europe. In 2018, mainly East and South-East European services have been added. It 
should be remarked the dataset contains the supply of services operating at least one times a 
week, not the actual demand, capacity, or prices. The services only span container transport, 
not bulk, break-bulk, or services dedicated to specific companies (e.g., a car manufacturer 
shipping a full trainload of cars from a factory to a port each week). 
 
3.2 Research Design 
 
This research is a study on the effects of service throughput time on changes in network 
structures. The transport modalities rail and barge are used as moderating variables between 
service throughput time and the changes in network structures. Observations are made on a 
longitudinal dataset of three years. For each snapshot, global network measures and node 
attributes will be calculated. By observing both the changes in the network measures and node 
attributes, and the change in service throughput time, a relationship between the two is 
established. The last part of the data analysis is focussed on whether the influence of service 
throughput time on changes in network structure is different if only the rail or barge network 
is considered. 
 

For visualising the network and extracting the measures from it, three statistical programs 
are used. Tulip 5.1.0 (Auber & Mary, 2007) and Gephi 0.9.2 (Bastian, Heymann, & Jacomy, 
2009) are used to visualise the network, but also have the ability to extract measures. The 
NetworkX 2.1 package (Hagberg, Schult, & Swart, 2008) for Python 3.6.4 (using Visual Studio 
Code 1.23.1 for the interface) and the tnet 3.0.14 (Opsahl, 2009) and brainGraph 2.2.0 (Watson, 
2018) packages for R 3.5.0 (using Rstudio 1.1.453 for the interface) are used for statistical 
analysis on the networks. Microsoft Excel is in the first instance used for cleaning the data and 
making it suitable for import in one of the three programs above; but is also used to perform 
additional computations on output from these programs. IBM SPSS is used for establishing the 
correlations, regressions, and levels of significance between service throughput time and the 
network measures. 
 
3.2.1 Operationalising the variables 
The dependent variable, network structure changes, is measured on both a global, network, 
level and a local, node, level. Table 5 provides an overview of measures for both of the levels. 
All measures are taking into account the network is directed. Nodal measures can be aggregated 
to a network level by taking the sum of the nodal measures and dividing it by the number of 
nodes (N) in the network. 
 

The network consists of a graph G = (V, E) where there is a set of nodes V with index v, 
and a set of edges E with index e. An edge eij connects node vi with node vj. M is the number 
of edges in set E, N is the number of nodes in set V. d(vi,vj) denotes the shortest path between 
two nodes. ℓ is the sum of the length of d(vi,vj) and a is the symbol for a link weight   
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Network measure Definition Formula 

Hierarchy 
Exponent of the slope of the power-
law line (h) drawn by plotting node 
frequency over degree centrality 

" = $%& 

Assortativity coefficient 
Pearson correlation between the 
degree (k) of each two 
neighbouring nodes 

' =
()* ∑ ,-.-[()* ∑ 1

2 (,- + .-)]
6

--

()* ∑ 1
2 (,-

6 + .-
6) − [()* ∑ 1

2 (,- + .-)]
6

--

 

Weighted assortativity 
coefficient 

Pearson correlation between the 
weighted degree (kw) of each two 
neighbouring nodes 

'8 =
()* ∑ ,-.-

8[()* ∑ 1
2 (,- + .-

8)]6--

()* ∑ 1
2 (,-

6 + (.-
8)6) − [()* ∑ 1

2 (,- + .-
8)]6--

 

Average shortest path 
length 

Average number of stops between 
two nodes 9: =

1
;(; − 1)∑ <(=-, =?)-,?

 

Weighted average 
shortest path length 

Average number of stops between 
two nodes with link weights (a) 

9:
8 =

1

;(; − 1)	ABC ∑ <D=-, =?E$-?-,?
 

Gamma index Observed links over the possible 
number of links F =

2G
[;(; − 1)]

 

Rich-club coefficient 
Extent to which nodes above a 
certain degree threshold (k) are 
connected 

H(.) =
2I.

;.(;. − 1)
 

Weighted rich-club 
coefficient 

Extent to which nodes above a 
certain weighted degree threshold 
(kw) are connected 

H(.8) =
2I.8

;.8(;.8 − 1)
 

Gini-index 
Concentration of a variable over 
nodes. JK and JL denote the 
cumulative proportions 

MBCB = N1 −O (JL-)*)(JK-)* − JK-)
-

N 

Network diameter The longest shortest path (ℓ) in the 
network AP%(ℓ)	 

(Weighted) Modularity Splits the network so it will form 
high connectivity communities 

Algorithm from Blondel, Guillamme, 
Lambiotte, & Lefebvre (2008) 

Nodal measure   

Degree centrality Number of neighbouring nodes .- = QR(B) =O G-?
S

?
 

Weighted degree 
centrality 

The sum of the average link 
weights (a) to all neighbouring 
nodes 

.-
8 = QR8(B) =O $-?

S

?
 

(Weighted) Betweenness 
centrality 

Number of times a node is crossed 
by (weighted) shortest paths QT(B)	UV	QT8(B) =

<?W(B)
<?W

 

Closeness centrality Sum of the length (ℓ) of the shortest 
paths to all other nodes QX(B) =

;
∑ ℓ(B, .)WY-

 

Clustering coefficient 

Share of actual links between nodes 
within the neighbourhood (Li) 
divided by the maximum possible 
number of links 

QZ(B) =
[-

.-(.- − 1)
2

 

Average nearest 
neighbour degree 

Average degree centrality of 
neighbouring nodes \]](B) =

1
.-
O .?

S

?
 

Average weighted 
nearest neighbour degree 

Average degree centrality of 
neighbouring nodes with link 
weights (a) 

\]]8 (B) =
1
.^-

O .?$-?
S

?
 

Table 5: Measures used for complex networks on a global and local level. From Ducruet & Lugo (2013), Guimera et al. 
(2005), Van den Heuvel, De Langen, Van Donselaar, & Fransoo (2013), De Langen & Sharypova (2013), Ciliberto, Cook, 

& Williams (2017), and Calatayud, Mangan, & Palacin (2017).  
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The independent variable is the service throughput time: a link weight based on the 
frequency of incoming and outgoing services from direct links with any modality, and the 
travel time of each of those services. It is calculated by adding the average waiting time if a 
customer would need the service to the travel time of the service (equation 1). The variable 
frequency is measured as number of times per week, therefore it is the denominator. The 
function is based on the queuing formula commonly known as Little’s Law (Little, 1961). 

 

_GV=B`G	aℎVUcdℎecf	aBAG = aVP=G9	aBAG +
1
2
∗

7
iVGjcGC`"

 
Equation 1: Service throughput time of one service between two links. 

The average service throughput time of all links between two nodes is calculated by 
summing the service throughput time of all the services and divide it by the number of services 
between two nodes (equation 2). Examples of equation 1 and equation 2 are demonstrated in 
table 6. 
 

k=GVPdG	_GV=B`G	aℎVUcdℎecf	aBAG = 	
∑_GV=B`G	aℎVUcdℎecf	aBAG

C
 

Equation 2: Average service throughput time of all services between two nodes. 

 
Services Travel time 

in days 
Frequency 

per week 
Average waiting 

time 
Service 

throughput time 
A à B 1 7 0.5 1.5 
A à B 2 14 0.25 2.25 
   Average A à B 1.7 
C à D 1 12 0.29 1.29 
C à D 2 3 1.17 3.17 
   Average C à D 2.23 

Table 6: Examples of service throughput time as link weight for link AàB (1.7) and CàD (2.23). 

Whether the impact of the service throughput time is different for barge and rail transport 
is analysed by splitting the network for the two modalities. The same measures from table 5 
will be used to describe the networks. Service throughput times will be calculated separately 
for these two networks by only taking the specific modality into account. By observing the 
development of the modalities separate from each other, the impact of service throughput time 
can be interpreted and correlated.  
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4 Results 
 
4.1 Changes in Network Structure 
 
Before the possible effects of service throughput time are examined, it is important to observe 
in what way the network structure is changing. The database descriptives (table 2) show the 
number of rail connections is stable over the course of 3 years, just like the average number of 
departures and the average travel time of this modality. The only remarkable change for rail 
transport is the 21 percent increase from 2018 compared to 2016 in average distance. Part of 
this increase can be attributed to the inclusion of a rail connection between Tilburg (The 
Netherlands) and Chengdu (China) of over 8,500 km (and vice versa). However, if this 
connection is removed, the average distance is still 639 km. Developments in barge transport 
seem to be more significant: over 200 new services are added and the average number of 
departures per week is decreasing by 0.4 from 2016 to 2018. Finally, the number of unique 
directed links show if services were added on already established links, or if new connections 
between cities were made. These numbers are slightly increasing over time; meaning new 
connections between cities are made each year. The gamma index (table 7), which is the 
fraction between the number of actual connections versus the total number of possible 
connections, confirms this. It is stable because only a small amount of unique connections is 
added to a network which has many possible routes between its 330 cities. 
 

  
 

 
Figure 5 (.1, .2, .3): The complete network of barge and rail connections, no link weights. Created with Tulip. 

Figure 5 visualises the complete network with all barge and rail connections. The absence 
of clear visual changes supports the observations from the database descriptives. In order to be 
able to see new connections arise on already existing routes, the networks are visualised with 
size and colour scales in appendices 2-4. In all the visualisations in the appendices which have 

2016 2017 

2018 
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a circular shape, the force-directed Fruchterman-Reingold algorithm is used (Fruchterman & 
Reingold, 1991). In the appendices 2-4 it is clear from the thickening and colouring of edges 
new services were mainly established on already existing routes in 2017 and 2018. The absence 
of changes in the outskirts of the figures in the appendices indicates new services are primarily 
added on routes from and to cities with a high number of connections. 
 
4.1.1 Hierarchy 
The exponent of the slope of the power-law line (hierarchy) is increasing in each consecutive 
year (figure 6 and table 7). The power law is a functional relationship between two values: 
node frequency and degree centrality in this case. One value will vary as the power of another 
regardless of the initial amount of the value. If the exponent is larger (>1), a relative change in 
degree centrality will result in a larger decrease of node frequency. Therefore, if the exponent 
is high, there will be a large number of low degree nodes and a low number of high degree 
nodes (a steep downward line). This indicates a centralised network in which high degree nodes 
connect to many low degree nodes. When the exponent is above 1, a network can be described 
as scale-free (Barabasi & Albert, 1999). As the measures from the datasets are below 1, the 
network for container transport by rail and barge is not scale-free. However, as the exponent is 
increasing, the network shows signs of slowly becoming so. The reason the network is not 
scale-free is primarily due to the clique located on the bottom left of the trend line; if the eight 
nodes with degree centrality values 1, 3 and 5 are removed in 2017, the hierarchy is 1.021. For 
the structure of the hinterland transport the increase in hierarchy indicates more importance is 
placed on nodes with a large number of connections. 
 

    
 

 
Figure 6 (.1, .2, .3): The exponent of the slope of the power-law line indicates whether the network is becoming more (1) or 

less (0) centralised. Computed in Gephi and visualised in Microsoft Excel.  
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4.1.2 Assortativity 
The assortativity coefficient shows a weak to moderate negative linear relationship between 
the degree centrality of two neighbouring nodes. Positive values of the coefficient mean there 
is a correlation between nodes of a similar degree, while negative values indicate nodes of a 
different degree are connected each other. So, if two connected nodes are randomly selected 
and one of them has a high degree, there is a weak to moderate chance the other node has a 
lower degree (and vice versa). The decrease of the assortativity coefficient indicates the chance 
of a high degree node connecting with a low degree node is getting larger. In terms of hinterland 
connectivity this corresponds with the hierarchy measures implying higher degree nodes are 
increasing in importance. 
 
4.1.3 Rich-club 
The actual change in connectivity of low and high degree nodes can be separated with the rich-
club coefficient. The rich-club measures the extent to which nodes above a certain threshold 
(degree) are linked with each other. Table 7 lists both the rich-club coefficient for nodes with 
a degree over 5 and nodes with a degree over 20. A high rich-club coefficient means many 
links exist between nodes over a certain degree. The increase in rich-club for nodes with a 
degree over 5 indicates the connectivity between nodes is getting larger; this aligns with the 
observations from the previous two paragraphs. However, it is not clear whether these new 
links are made between low and high degree nodes or between high degree nodes. In order to 
see where the changes occur, the rich-club coefficient with a degree threshold of 20 is used. 
The rich-club [≥20] increases significantly from 2016 to 2017, just like the rich-club [≥5]; so, 
the increasing connectivity between these two years cannot solely be attributed to nodes with 
a degree between 5 and 20. However, the rich-club [≥20] is decreasing in the following year, 
while the rich-club [≥5] is still increasing. The change in connectivity can thus be attributed to 
nodes with degrees between 5 and 20. If the measures in 2016 are compared with 2018, it can 
 

Network and node level measures 2016 2017 2018 
Hierarchy 0.671 0.698 0.754 
Assortativity coefficient -0.272 -0.333 -0.353 
Average shortest path length 3.760 3.830 3.653 
Gamma index 0.016 0.015 0.015 
Rich-club coefficient [degree ≥5] 0.069 0.093 0.097 
Rich-club coefficient [degree ≥20] 0.421 0.476 0.409 
Gini-index [degree centrality] 0.573 0.576 0.582 
Gini-index [edge distribution] 0.670 0.718 0.706 
Average degree centrality 5.055 5.006 5.018 
Average betweenness centrality 848 881 805 
Average closeness centrality 0.290 0.288 0.307 
Average clustering coefficient 0.361 0.331 0.315 
Average nearest neighbour degree 59.051 84.591 76.760 
Network diameter 11 12 11 
Number of communities 13 13 14 
Table 7: Network and node level measures. Extracted from Tulip, Gephi, and computed in Microsoft Excel, brainGraph for 

R, and NetworkX for Python. 

be concluded nodes with a degree above 5 but under 20 are increasing in connectivity. Whether 
this is with high degree nodes or with nodes of a similar degree cannot be determined from the 
rich-club measures, but the decreasing assortativity coefficient yields this is primarily with high 
degree nodes. An interesting observation for the structure of the hinterland is the decreasing 
number of connections between nodes with a degree over 20. This can imply the exchange of 
containers between large hubs is declining and hinterlands are more served over specific 
corridors rather than a flexible route which can cross several large hubs. 
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4.1.4 Gini-index 
The Gini-index is a construct used to measure (in)equality by calculating the difference 
between the frequency of observations with a line of perfect equality. It is computed by 
constructing a Lorenz curve ranking the frequency of observations (degree or number of edges 
is this case) from low to high and calculating the deviation from the line of perfect equality. 
The share of the area between the line of perfect equality and the Lorenz curve compared to 
the total area below the line of perfect equality is the Gini-index. If the area is small, so closer 
to zero, there is more equality because the Lorenz curve will be closer to the line of perfect 
equality. The increasing Gini-index [degree centrality] (table 7) indicates the distribution of 
unique edges is less dispersed; so, nodes already having a large number of connections are only 
getting more of them. The rise in the Gini-index [edge distribution] (table 7) confirms this: the 
total number of edges is distributed over less nodes. 
 

This supplements the assortativity measures used to conclude low degree nodes are 
increasing their connectivity with high degree nodes based on the rich-club index. Thus, hubs 
in the European container transport network are getting stronger because operators choose to 
increase the number of services departing from or arriving at these hubs. The hubs are not 
necessarily getting stronger because the number of destinations which can be reached is 
increasing. Appendix 1 support this: the table shows the development of degree values of the 
30 largest degree nodes over the course of three years and indicates the number of destinations 
reachable from these 30 nodes is actually on average decreasing over three years (14 out of the 
30 see an increase in degree). It is possible these connections are primarily between the nodes 
listed in the table because the rich-club [≥20] already showed the connectivity between these 
nodes is declining. 

 
4.1.5 Centralities 
The difference between average degree centrality and average nearest neighbour degree give 
insights in how nodes with a different degree are linked to each other. The average degree 
centrality is the average number of unique connections per node for all nodes in the network. 
The average nearest neighbour degree indicates the average degree centrality of all the direct 
neighbours of a certain node aggregated to a network measure for all nodes. If the measures 
are equal, nodes with a similar number of unique links to other nodes are strongly connected 
to one another. If the average degree centrality is lower than the average nearest neighbour 
degree, then low degree nodes are more often linked to high degree nodes. In the observed 
networks the latter is the case: the average degree is smaller than the average nearest neighbour 
degree (table 7); so, low degree nodes are primarily connected to high degree nodes. 
 

This is supported by the high average betweenness centrality (table 7): the number of 
shortest paths running through a node averaged over all nodes in the network. High 
betweenness centrality values can also occur if a node is acting as a bridge linking two 
communities with one another; any shortest path between these two communities is running 
over the bridge. This is however not the reason for the high values in the observed networks as 
several measures have already showed low degree nodes are primarily connected to high 
degree nodes. The high average betweenness centrality value is caused by the shortest paths in 
the network running through a selection of nodes, the hubs. The hubs link different parts of the 
network with one another; and link cities strongly connected to one hub but not to each other. 
The hubs have to be crossed in order to create a shortest path between two cities not located in 
the same part of the network or between cities in the same area but not connected to each other.  
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Both the average degree centrality in combination with the average nearest neighbour 
degree, and the average betweenness centrality indicate a centralised network because of the 
importance of hubs and the low connectivity between low degree cities. Over the three years 
in the dataset, the betweenness centrality is first increasing and then decreasing. An increase 
suggests certain hubs have gained importance and interconnectivity between low degree cities 
is decreasing even further. The subsequent decrease could be the results of the offering of more 
direct services: if these by-pass hubs, then the number of shortest paths going through the hubs 
will decrease. This would also justify the increase in average distance of train services. The 
increase in the average closeness centrality in 2018 compared to 2017 is in line with the trend 
of the average betweenness centrality in those years. Closeness centrality is the number of 
nodes in the network divided by the average length of all shortest paths from one node. For 
Rotterdam is it for instance close to 1 because it has many direct connections to other nodes. 
Hence, as the average closeness centrality of the network is increasing, the average shortest 
path length is decreasing, and the network is becoming more central. Just like the rich-club 
index, the increase of direct services could signal the increasing importance of corridors 
crossing less cities on their way.  
 
4.1.6 Communities 
It is possible networks are both scale-free and small-world. This is achieved by adding a few 
random edges in a structured scale-free network (Watts & Strogatz, 1998). These new edges 
are characterised as weak links because the high degree nodes in the scale-free network are 
already connecting most nodes. As is concluded, the network of container transport is currently 
not scale-free; although it shows signs of becoming so and calculations have shown a lack of 
connections to only 8 out of the 330 nodes cause the network not to be classified as scale-free. 
Since small-world networks show regional specialisation and efficient transfer of information 
within its communities (Watts & Strogatz, 1998), it is interesting to research whether this type 
of network classification can be applied to the datasets. 
 

Small-world networks tend to consist of communities which are interconnected by hubs. 
The communities in the network often have high average clustering coefficients (> 0.7), small 
diameters (< 5), and low average shortest path lengths (< 3) (Ducruet & Notteboom, 2012). 
The clustering coefficient is based on the number of triplets in the network. A triplet is a set of 
three nodes which is connected by two (open triplet) or three (closed triplet) edges. The number 
of closed triplets divided by the sum of open and closed triplets, averaged over all nodes in the 
community or network, is the average clustering coefficient. If the coefficient is higher, the 
network is more connected because there is a larger number of closed triplets; however, it is 
not yet clear whether this is because just a few high degree nodes increase the average. The 
longest shortest path in the network is defined as the diameter. If the diameter would be large, 
there is a lower chance the average shortest path length is low because some nodes are 
positioned far away from each other. To define small-world networks, the average shortest path 
length has to be low in addition to a high clustering coefficient. This shows there is indeed a 
good connectivity between nodes since the average shortest path would be longer if only some 
high degree nodes would have caused a high clustering coefficient.  
 

Appendices 5-7 display the communities identified in the unweighted networks for 2016-
2018. Based on maximizing the modularity with an algorithm (Blondel et al. 2008) adding and 
removing nodes to or from a certain module (i.e., establishing strong connections within a 
community, and weak ones with other modules), communities are detected and visualised using 
Gephi. The communities show several small-world characteristics as it comes to the average 
shortest path length and the network diameter. However, the clustering coefficient is not over 
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0.7 for any of the communities in the three years of data. This means the interconnectivity 
between all nodes within a community is low, but the interconnectivity through central nodes 
in the communities is high as average shortest paths are small and the diameter is so as well. 
 

Although the network is not small-world, it is still interesting to make some observations 
about the detected communities. The number of communities is for instance stable (table 7), 
but the composition of the communities is changing (appendices 5-7). For example, Norway 
and Sweden are in 2017 and 2018 considered as two separate modules, meaning there is a lack 
of interconnectivity although they are neighbouring countries positioned on outskirts of 
Europe; which was not the case in 2016. The turnaround can be explained by comparing the 
measures between the three years. The combination Norway/Sweden displays a relatively low 
average clustering coefficient in 2016. When taken apart in 2017, Norway shows a significantly 
higher clustering than Sweden (then belonging to Germany/Sweden). For Sweden this means 
the interconnectivity to other modules just needs a little increase in order to be separated from 
Norway. Cities in smaller countries such as Hungary, Czech, Austria, Bulgaria, Romania, and 
Swiss tend to be switching communities based on how good they are connected to the most 
nearby hub. This can be useful strategical information for rail or barge operators when they 
want to increase access to certain hinterland areas. 
 

           
 

 
Figure 7: The community structures in 2016-2018 with a geographical layout. Visualised in Gephi. 
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However, there are also stable communities. Examples are the UK and Ireland for the 
obvious reasons they are islands and the short-sea shipping links have been removed; the barge 
network in France sailing on the Rhône, Somme and Seine rivers; and remote areas such as the 
Trans Alp Roll-on Roll-off train. Not completely remarkable is the observation the 
communities consisting primarily of a single country show some of the highest clustering 
coefficients and thus look more like small-world networks. Most striking is how geographically 
dispersed some of the communities are which consist of two or more countries and have an 
equal number of nodes in each country: Germany/Spain in 2018 for example. When looking at 
the actual links in this specific community, a high frequency train link offered by the operator 
Kombiverkehr from Ludwigshafen (Germany) to Barcelona, Granollers, Madrid, and 
Tarragona is responsible for establishing the modularity. So, train links with a sufficient 
frequency have the ability to form corridors and make connections between distant countries. 
 
4.2 Service Throughput Time as Link Weight 
 
Service throughput time is now applied as a link weight in order to analyse its possible 
influence on changes in the network structures described in chapter 4.1. Figure 8 shows the 
structure of the frequency per travel time is not changing significantly. What is odd about 
figures 8.1 and 8.2, is the increase in frequency if the transport time is larger than seven days. 
This trend is reversed in 2018: an increase in travel time leads to even lower frequencies (the 
highest travel time of 17 days is a rail service from The Netherlands to China). In 2016, some 
of the services covered a large distance, from Belgium to Turkey and Greece for example, 
explaining their long travel times. However, these services do not have a high frequency. The 
high frequency and long travel time services are primarily barge routes from Antwerp sailing 
over the Rhine river, and rail connections from Genk (Belgium) to Bulgaria and Romania. The 
latter are offered six times a week and have a travel time varying between the eight and ten 
days. These rail connections disappear on the right side of figure 8.3 because the operators 
have decided to reduce the number of cities with direct connections from Genk. An explanation 
for the long travel times in barge transport is two-fold: barges are slow, and there are a lot of 
ports to call along the way, resulting in dwell-time. The 2017 data shows a similar trend. 
 

Figure 9 compares the average distance in kilometre versus the travel time in days. As 
already indicated in figure 4 by De Langen et al. (2017), the frequency of service is decreasing 
when the distance is increasing. The 2017 and 2018 datasets show a relative stable trend in 
average distance when the travel time is increasing, but 2016 shows the opposite: the average 
distance is increasing as the travel time is getting longer. The changes in 2017 and 2018 
compared to 2016 can be attributed to the increase in slow barge services from Rotterdam and 
Antwerp sailing over the Rhine, Maas, and Moselle rivers to Germany, France, and 
Switzerland. The disappearing of the longer rail connections described in the previous 
paragraph are also contributing. 
 

The average service throughput time is slowing down from 3.1 in 2016, to 3.2 in 2017, and 
finally 3.3 in 2018. In the visualisations of the weighted networks in appendices 5-7, the slower 
average service throughput time is also visible: there are less brown edges, and the green edges, 
indicating slow service throughput times, are becoming thicker. The slow connections are 
primarily seen around large hubs such as Antwerp, Rotterdam, and Hamburg. This is rational 
as these cities have the cargo volumes to fill trains or barges leaving to more distant areas which 
take more days to reach and have a less departures. A second reason, specifically for Antwerp 
and Rotterdam, for the large amount of thick green edges, is the development of a relatively 
slow barge network sailing over the Rhine, Maas, and Moselle rivers.   



 

 

 
 
 

   
Figure 8 (.1, .2, .3): If the transport time is increasing, the number of services offered and the average number of departures of a service are (generally) decreasing. 

 
 
 

   
Figure 9 (.1, .2, .3): If the transport time is increasing, the number of services offered is decreasing and the average distance is increasing. The link from The Netherlands to China is left out in 

figure 9.3 because it distorted the graph. 

23
 



 
 

 24 

4.2.1 Weighted centralities 
For a network with link weights, many of the same measures can be computed as one without 
(table 8). The average weighted degree centrality is the sum of the average service throughput 
times over all unique edges a node has. This is different than the degree centrality in an 
unweighted network because it does not take the number of links into account. However, it is 
the preferred measure for analysing weighted networks (Barrat, Barthelemy, Pastor-Satorras, 
& Vespignani, 2004). An increase of this measure over the course of three years means the 
average service throughput times of unique edges are slower, or the number of unique edges 
per node is decreasing. With average service throughput times of 3.1 in 2016, 3.2 in 2017, and 
3.3 in 2018, the number of unique edges (degree centrality in an unweighted network) would 
be estimated at 4.979 (15.343 / 3.1) per node in 2016, 4.883 in 2017, and 4.956 in 2018. This 
is stable, just like in the unweighted network, and also close to the values in table 2. The 
increase of the average weighted degree centrality is thus caused by slower average service 
throughput times and not by a decrease in edges. As a consequence of the increasing average 
degree, the average weighted nearest neighbour degree is increasing as well. 
 

The betweenness centrality for weighted graphs is unlike the unweighted variant not based 
on shortest paths crossing the least number of nodes, but on shortest paths with the lowest total 
sum of weights. A higher betweenness centrality in a weighted network compared to an 
unweighted network means there are faster routes connecting any two random nodes than the 
one with the least number of edges. This is because the high degree nodes often have faster 
connections, so their betweenness centrality will be higher. As the observed weighted 
betweenness values are consequently higher than the unweighted values (848, 881, 805), more 
shortest paths routed through a selection of high degree nodes. The difference between the 
weighted and unweighted variant is however decreasing (110, 80, 67); thus, less shortest paths 
based on service throughput times are going through high degree nodes. This could be caused 
by cities with an average number of connections, which can be classified as inland hubs, having 
fast services between cities which have less connectivity to the network.  
 

The trend in average weighted shortest path length from 2016 to 2017 can be explained by 
the increase of average travel time of both rail and barge connections (table 2). However, the 
decrease from 2017 to 2018 can only by explained by the decreasing average travel time of 
barge services (table 2); all the other variables of which the average service throughput time is 
constructed are moving in the direction of longer shorter paths. It is though unlikely the relative 
small number of barge connections compared to rail connections result in the significant drop 
(-1.690) in average shortest path length. Especially since rail services are on average faster, so 
there is little chance the decreasing average travel time of barge services is resulting in a faster 
path than a rail service. The developments causing the shorter paths are therefore probably on 
specific links or corridors which have a large influence in the network connectivity. 
 

Weighted network measures 2016 2017 2018 
Weighted assortativity coefficient -0.262 -0.256 -0.236 
Weighted rich-club coefficient [degree ≥15]* 0.953 0.955 0.982 
Weighted rich-club coefficient [degree ≥60]* 0.479 0.412 0.454 
Gini-index [weight distribution] 0.610 0.750 0.742 
Average weighted degree centrality* 15.434 15.627 16.354 
Average weighted shortest path length* 9.644 10.961 9.271 
Average weighted betweenness centrality* 958 961 872 
Average weighed nearest neighbour degree 23.859 25.960 28.304 
Number of communities 11 13 15 
Table 8: Weighted network and node level measures. Extracted from Gephi and computed in R using the tnet package, and 

Python using NetworkX. *Service throughput times on parallel edges are averaged and recorded as one link.  
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4.2.2 Other weighted network measures 
The weighted assortativity is based on the weighted degree centrality of nodes. This is slightly 
different from the Pearson correlation of unweighted graphs since it does take the number of 
edges a node has into account. The resulting values in table 8 are close to zero and therefore 
there is only a weak negative linear relationship. So, nodes with a high average weighted degree 
centrality do still have slightly more chance to be connected to low average weighted degree 
centrality nodes (and vice versa). The Pearson correlation for unweighted graphs is lower 
because low degree nodes with slow incoming and outgoing average service throughputs times 
are assigned a higher weighted degree centrality compared to the unweighted graph. Thus, 
more nodes in the network will hold higher weighted degree centrality values. As the values of 
the assortativity coefficient are stable over time, the average weighted degree centrality of 
nodes is not changing much; and this is indeed the case as shown in table 8. 
 

Just like the assortativity coefficient, the rich-club is based on the degree centralities which 
do not take the number of links a node has into account. Different degree thresholds are used 
for the rich-club analysis compared to the unweighted graph since the weighted degree 
centralities have higher values. The thresholds are set by multiplying the average service 
throughput time over three years (3.2) with the degree thresholds from the unweighted graph. 
As a consequence of the stable average weighted degree centrality, the rich-club coefficient is 
so as well. The combination of the two rich-club values for each year show the same 
development as the unweighted graphs: the connectivity between high degree nodes is 
decreasing and the connectivity between low and high degree nodes is increasing. Since the 
Gini-index is not based on the average service throughput time of all parallel edges, but on the 
sum of all parallel edges, nodes with more services have higher degree values than nodes with 
an equal number of edges but a smaller number of services (assuming all services have the 
same service throughput time for a moment). The increasing Gini-index indicates more 
inequality, so a larger number of services belong to a smaller number of nodes. Calculations 
show 20 out the 330 nodes in 2018 not only hold 50 percent of all services, but these services 
are also responsible for 50 percent of the total amount of service throughput time in the 
network. 
 
4.2.3 Communities 
A quick glance on the tables containing the communities (appendices 11-13) reveal the extra 
communities are mainly small ones; especially in 2018. The communities in the unweighted 
network, which were often just consisting of two or three countries, do barely exist anymore. 
The new large communities rely on fast average service throughput times for their 
interconnectivity: otherwise the nodes located far apart would not be in the same community. 
Just like the unweighted network, the community creation in the weighted network does not 
make the network a small-world: the clustering coefficients are too low, and the diameter is 
too large. Worthy remarking is the absence of an increase in the average shortest path lengths 
although the communities have become more geographically scattered and the diameter has 
increased. It indicates services with a low throughput time have the ability to effectively form 
communities with nodes far apart from one another; but still with a limited number of nodes in 
between. 
 

An example is the spread of nodes belonging primarily to The Netherlands all the way to 
Northern Italy (orange in figure 10.1). These services belong to a rail corridor which is part of 
Trans-European Transport Network (TEN-T) from Rotterdam (The Netherlands) to the Italian 
cities of Milan and Genoa. TEN-T has in total nine of these corridors (figure 11) and multiple 
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of them are visible in the visualisations of the community structures: Atlantic, North Sea-
Baltic, Scandinavian-Mediterranean, Baltic-Adriatic, Rhine-Alpine. The corridors are less 
visible when the communities are established without link weights; pointing out service 
throughput time is a useful link weight for detecting communities and specifically corridors. 

 

   
 

   
 10 (.1, .2, .3): The community structures with service throughput time as link weight for 2016-2018 with a geographical lay-
out. The size of a node represents the number of connections and the thickness of an edge represents the number of services. 

Visualised in Gephi. Figure 11: The TEN-T corridors: Source: Eurostat (2017b). 

Relating back to what is observed in the networks without link weights, adding average 
service throughput time as a link weight is resulting in the same developments regarding 
network structure; and it is even better suitable for finding communities. The Gini-index shows 
the number of link weighs is clustering around higher degree nodes, just like the Gini-indices 
in table 7 have shown low degree nodes are increasing their connectivity to high degree nodes. 
Weighted centrality measures confirm this trend in both the weighted and unweighted analyses. 
For establishing communities and finding corridors, service throughput time as a link weight 
shows the ability to resemble the real-world situation.  

2016 

2018 

2017 
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4.3 Correlation of Results 
 
So far the network is described based on a list of 15 measures and service throughput time is 
used as a link weight. The network measures in the weighted network show the same trends as 
the unweighted network; this indicates the service throughput time is at least not conflicting 
the observations in network changes. However, in order to test whether the changes in service 
throughput times are related to the network changes, correlations are calculated between the 
average service throughput time and the list of 15 measures. The average departures per week 
and the average travel time are added as control variables as the service throughput time is 
based on these two variables. The average distance is added to check whether using it can be 
interesting for a follow up research. 
 

Table 9 contains all the results and shows five of the 15 measures have a strong correlation 
(≥0.9) with the service throughput time. Another seven show a high correlation (≥0.7). The 
hierarchy has a strong positive correlation with the average service throughput time (0.972): 
so, if the service throughput time is higher, the high degree nodes increase in importance. This 
can be attributed to the fact high degree nodes have links reaching in the far hinterlands, which 
take more time to reach and have less departures per week. If the service throughput time is 
higher, it could mean more low degree nodes ,which are located farther away, are connecting 
to the high degree nodes. For the same reason there is high negative correlation (-0.970) with 
the assortativity coefficient: a slower service throughput time will result in more low degree 
nodes connecting to high degree nodes, thus decreasing the assortativity. A decreasing gamma 
index, although only minimal, is highly correlated (-0.884) with the service throughput time. 
The level of significance is not good, but the developments do make sense as more direct 
connections from large degree nodes to low degree nodes result in less connections between 
low degree nodes and former intermediary hubs. The high correlation (-0.991) between the 
average service throughput time and the clustering coefficient supports this: there are less 
closed triplets, so more nodes are only reached from one point. 

 
As the rich-club coefficient and the Gini-index [degree centrality] are based on the degree 

centrality (with which there is indeed a strong correlation), it is more helpful to see if the service 
throughput time is correlating with the average degree centrality. The correlation between the 
two is -0.749, indicating a high chance a slower service throughput time is resulting in a higher 
degree centrality. However, as both the increase in service throughput time and degree 
centrality are minimal in table 7, the significance of this result is not good. The logic a slower 
service throughput time is resulting in more services to low degree nodes, and thus increasing 
the average degree, is nevertheless still there. 

 
Not completely remarkable is the two variables from which the service throughput time is 

constructed are also showing high and strong correlations with the network measures. The 
average travel time also has strong and high correlations with 12 out of the 15 measures, just 
like the average service throughput time. The average number of departures per week has eight 
strong correlations, three more than the average service throughput time, but five less in total. 
The strong correlations between the underlying variables of the service throughput time give 
an indication both of variables are of importance in the aggregated measure. Average distance 
shows some high and strong correlations with measures related to the shortest paths: as the 
average distance increases, the shortest paths decrease in number of nodes to cross. This can 
point towards the use of more direct links. 



 
 

 

 
Table 9: Correlations between the average service throughput time and all network measures for 2016-2018 (N=3). Correlations above 0.8 are in bold for more clarity. Computed in IBM SPSS.

**. Correlation is significant at the 0.01 level (2-tailed). 

*.   Correlation is significant at the 0.05 level (2-tailed). 
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4.4 Differences Between Barge and Train 
 
It is possible a change in the service throughput time for barge and rail services is of different 
influence on the networks because of the fundamental differences between barge and rail 
transport: barges are slower, train are more used for longer transport, and it is easier to construct 
a railroad than a canal; so, barges are more restricted to corridors. Therefore, in the final part 
of the analysis, the networks are split up for each modality. 
 
4.4.1 The rail network 
When the networks are separated, and the average service throughput times are calculated for 
each network (table 10), both rail and barge services are increasing in service throughput time 
and are thus responsible for the increase in average service throughput time on an aggregated 
level. Because of the lower number of barge services compared to rail services, the larger 
increase of service throughput time for barges is not proportionally reflected in the aggregated 
network measure. Splitting the network for the two modalities is therefore useful. 
 

Service throughput time measures 2016 2017 2018 
Average service throughput time 3.1 3.2 3.3 
Average service throughput time rail 2.9 2.9 3.0      
     Average departure per week 4.8 4.8 4.7 
     Average travel time 1.8 1.9 1.9 
Average service throughput time barge 3.8 4.1 4.3 
     Average departure per week 3.2 3.1 2.8 
     Average travel time 2.4 2.6 2.5 

Table 10: Service throughput times for all datasets. 

 

  
 

 
Figure 12 (.1, .2, .3):  The complete network of rail connections. Created with Tulip. 
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From the visuals in figure 12 there is (again) little change visible; this matches with the 
stable number of rail services displayed in table 2. Visualisation in appendix 14 show 
Rotterdam is for a change not the most important European node: Hamburg is dominating the 
rail market and other German nodes such as Bremerhaven and Duisburg show good 
connectivity as well. The rail service market is primarily focussed on The Netherlands, 
Belgium, Northern-Italy, and Germany and the number of services is increasing between these 
regions as indicated by the change of thickness and colour of the edges. There is however also 
a change visible from the large degree nodes to the lower degree nodes in their proximity: these 
edges are becoming thicker are more orange/red, which means an increase in services. Both 
the edges between large degree nodes, and between large degree nodes and lower degree nodes 
are thus increasing while the number of services (table 2) is actually decreasing between 2016 
and 2018. It could indicate services are more offered over certain corridors because this would 
increase the number of connections to a particular set of high degree nodes (hubs) and decrease 
the number of connections to small degree nodes. 
 

As the number of services is slightly lower in 2018 compared to 2016, some of the measures 
in table 11 are returning to their former values after the increase of services in 2017. However, 
some measures end up higher or lower than before. The main changes for rail services table 2 
presents are the increase in average distance, the increase in travel time, and the decrease in the 
number of weekly departures. Just like the complete networks, the rail networks are not 
showing signs of being scale-free (hierarchy <1, figure 13); the increasing hierarchy is however 
indicating the network is centralising. This supports the change of colours and the thickening 
of edges around high degree nodes visualised in appendix 14. The stable gamma index means 
 

    
 

 
Figure 13 (.1, .2, .3): The exponent of the slope of the power-law line indicates whether the network is becoming more (1) or 

less (0) centralised. Computed in Gephi and visualised in Microsoft Excel.  
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there are not many new connections arising between nodes which are not already connected; 
in line with the stable and even decreasing number of services from table 2. A decreasing weak 
to moderate negative linear relationship of the assortativity coefficient also indicates there is a 
larger chance high degree nodes are being connected to lower degree nodes; signalling 
centralisation. 
 

The use of intermediary nodes and centralisation in the rail network is also supported by 
the other measures in table 11. As the interconnectivity of higher degree nodes is increasing, 
the rich-club for both [>5] and [>20] is so as well. The decrease of rich-club [>20] to its former 
value in 2018 (compared to 2016) can be attributed to an increase of connections to 
intermediary hubs with a degree lower than 20. This would shift some of the edges away from 
the rich-club [≥20] but still measure an increase in the rich-club [≥5]. In a real-world hinterland 
structure this would look like a corridor because cities with many unique connections are 
foremost making connections with intermediary cities, and these intermediary cities have the 
services for the distribution of containers to most of the small cities. The slight increase in 
Gini-index is supporting this reasoning since it points towards centralisation while the number 
of services has actually decreased; so more of the remaining services remain on the edges 
leading from or towards high degree nodes. 
 

Network and node level measures rail 2016 2017 2018 
Hierarchy 0.662 0.784 0.749 
Assortativity coefficient -0.166 -0.257 -0.253 
Average shortest path length 4.044 4.101 3.887 
Gamma index 0.019 0.018 0.019 
Rich-club coefficient [degree ≥5] 0.075 0.095 0.097 
Rich-club coefficient [degree ≥20] 0.418 0.485 0.419 
Gini-index [degree centrality] 0.550 0.552 0.557 
Average degree centrality 5.090 5.000 5.004 
Average betweenness centrality 762 782 692 
Average closeness centrality 0.274 0.274 0.294 
Average clustering coefficient 0.277 0.243 0.241 
Average nearest neighbour degree 27.370 29.800 27.904 
Network diameter 11 12 11 
Number of communities 14 15 12 

Table 11: Network and node level measures for rail transport. Extracted from Tulip, Gephi, and computed in Microsoft 
Excel, brainGraph for R, and NetworkX for Python. 

Therefore, the average shortest path length is also decreasing: the increasing number of 
hubs shorten connections between small nodes normally displaying high average shortest path 
values. Consequently, the betweenness centrality will go down as less shortest paths will go 
through the high degree nodes and more through intermediary nodes acting as hubs. When the 
betweenness of high degree nodes is decreasing proportionally faster than the increase of the 
betweenness of the intermediary hubs, the average betweenness centrality on a network level 
will go down. Finally, an increase in the closeness centrality is expected, and observed, since 
the average shortest path length is decreasing.  
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Appendix 15 visualises the rail network with the links weights. As the networks are drawn 
with a force-directed algorithm, the distance of nodes on the graph is representing the number 
of services between them. Antwerp is located close to some large French cities, and it is also 
clear Rotterdam and Duisburg have strong connections with each other. In 2017 and 2018, the 
size of smaller nodes located just around the centre of the graph is growing, and the graph is 
showing more brown edges. The combination of these two observations signals the number of 
services to middle degree nodes are increasing. The indication faster service often belong to 
high degree nodes is supported by the increasing weighted assortativity index. Although it is 
again based on the sum of the average throughputs from a node, and not on the number of links, 
it signals nodes with a low average service throughput time are connecting more to high 
average service throughput time nodes. 
 

Weighted network measures rail 2016 2017 2018 
Weighted assortativity coefficient -0.174 -0.183 -0.228 
Weighted rich-club coefficient [degree ≥15]* 0.980 0.984 0.981 
Weighted rich-club coefficient [degree ≥60]* 0.520 0.463 0.474 
Gini-index [weight distribution] 0.582 0.661 0.658 
Average weighted degree centrality* 14.896 14.990 15.380 
Average weighted shortest path length* 10.185 11.380 9.410 
Average weighted betweenness centrality* 853 857 755 
Average weighed nearest neighbour degree 10.542 10.753 10.186 
Number of communities 14 15 14 

Table 12: Weighted network and node level measures for rail transport. Extracted from Gephi and computed in R using the 
tnet package, and Python using NetworkX. *Service throughput times on parallel edges are averaged and recorded as one 

link. 

A slight increase in weighted degree centrality could be the cause of the improved 
connectivity of middle degree nodes. Unlike the betweenness centrality in the unweighted 
graph, the addition of extra edges to the middle degree nodes does not influence the degree 
values of the high degree nodes; they will, due to their high number of services, probably still 
have a service running on a unique link although the number of services might have decreased. 
If the average weighted degree centrality is divided by the average service throughput time for 
rail services, the measures are similar to the unweighted graph; 5.137 (14.896/2.9) for 2016, 
5.169 for 2017, and 5.127 for 2018. Placing link weights on the graph results in weighted 
betweenness values higher than the unweighted betweenness values; indicating the fastest 
paths do go through a particular set of nodes, creating a high average. The differences between 
the weighted and unweighted measure are however decreasing (91, 75, 63), signalling the set 
of nodes holding fast services is increasing. This confirms a trend of increased importance of 
intermediary nodes. The decreasing average shortest path length supports this as well: nodes 
located far away from one another can reach each other faster because intermediary nodes with 
fast services are increasing the interconnectivity of the network. Finally, the rich-club 
coefficients are not showing much variation because the average weighted degree is relatively 
stable, but it does show the same trend as in the unweighted graph: nodes with a degree under 
20, intermediary nodes, are increasing in connectivity. The Gini-index moving towards 
centralisation supports this again.  
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4.4.2 The barge network 
The final network under review is the one from the inland shipping services by barge. The 
number of services included in the Intermodal Links database has increased significantly over 
the course of three years: 175 extra in 2017 and 74 extra in 2018. The average distance is first 
increasing from 198 km in 2016 to 368 km in 2017 and then decreasing to 201 km in 2018. 
Although a lot of services have been added, the network is not visually changing as figure 14 
shows. This is reasonably logical as the barges are restricted to rivers and canals. The gamma 
index in table 13 also indicated this: it is stable, so few new unique connections arise while 
extra services are added. Rotterdam and Antwerp are by far the most important spots where 
barges sail from or to and this is also not changing with the addition of extra services (appendix 
14). Other cities with a relative large number of connections are Terneuzen (The Netherlands), 
Zeebrugge (Belgium), Hamburg (Germany), Strasbourg, and Le Havre (both France). 
 

  
 

 
Figure 14 (.1, .2, .3):  The complete network of barge connections. Created with Tulip. 

With the addition of extra barge services, the hierarchy is increasing towards a more 
centralised, yet not scale-free, network (figure 15). In order to become a scale-free network, 
the nodes currently having a relative large degree (located between eight and 27) compared to 
all the small degree nodes will have to increase their number of connections, or nodes with low 
degrees have to increase their connectivity to other nodes. Both are not likely to happen due to 
the nature of the barge network; it is restricted to the rivers and canals. Compared to the 
complete network and the separated rail network, the assortativity coefficient displays a strong 
negative linear relationship. Hence, if a high degree node is selected, the chance is significant 
a randomly picked node to which it is connected is of a small degree (and vice versa). The huge 
difference between the average nearest neighbour degree and the average degree centrality 
shows the similar trend: most nodes connect to a large degree node. 

2016 2017 

2018 
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Since extra services are primarily added on already existing links, the average shortest path 
length is not changing significantly. As the closeness centrality is based on the shortest paths 
and the number of nodes in the network, both of which are stable, it is stable as well. For the 
rich-club analysis in the barge network the degree thresholds are lower than the rail or complete 
network since the average degree centrality and the maximum degree centrality are lower 
compared to them. The rich-club coefficients show the large increase in connections in 2017 is 
creating some new unique connections between both along high and low degree nodes. 
However, as the Gini index is increasing, resulting in more inequality of unique edge 
distribution, the share of extra connections belongs primarily to high degree nodes. 

 

    
 

 
Figure 15 (.1, .2, .3): The exponent of the slope of the power-law line indicates whether the network is becoming more (1) or 

less (0) centralised. Computed in Gephi and visualised in Microsoft Excel. 

 
Network and node level measures barge 2016 2017 2018 
Hierarchy 0.681 0.631 0.719 
Assortativity coefficient -0.646 -0.637 -0.647 
Average shortest path length 1.990 1.976 1.979 
Gamma index 0.037 0.038 0.039 
Rich-club coefficient [degree ≥3] 0.099 0.218 0.228 
Rich-club coefficient [degree ≥8] 0.448 0.559 0.579 
Gini-index [degree centrality] 0.536 0.554 0.569 
Average degree centrality 3.588 3.717 3.851 
Average betweenness centrality 64 62 68 
Average closeness centrality 0.534 0.524 0.534 
Average clustering coefficient 0.590 0.578 0.542 
Average nearest neighbour degree 72.216 131.901 122.077 
Network diameter 4 3 3 
Number of communities 10 9 9 
Table 13: Network and node level measures for barge transport. Extracted from Tulip, Gephi, and computed in Microsoft 

Excel, brainGraph for R, and NetworkX for Python. 
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As the average service throughput time is increasing for barge services, and the number of 
unique connections is fairly stable, the weighted network measures will show a similar 
increase. This steady rise of service throughput time can directly be translated to the increases 
in the weighted degree centrality, weighted shortest path length, and weighted nearest 
neighbour degree as they are all based on the sum of the service throughput time for a single 
node. For some other measures the latter is also the case, but they require some extra 
explanation. The weighted betweenness is for instance increasing because of the centralisation 
of the network (supported by the increasing Gini-index) around high degree nodes and not 
necessarily because the average service throughput time is increasing. As the weighted 
betweenness is higher than the unweighted measure, more shortest paths go through a particular 
set of high degree nodes rather than following the route with the least nodes in between. 
 

Weighted network measures barge 2016 2017 2018 
Weighted assortativity coefficient -0.674 -0.632 -0.634 
Weighted rich-club coefficient [degree ≥12]* 0.779 0.933 0.821 
Weighted rich-club coefficient [degree ≥32]* 0.423 0.525 0.406 
Gini-index [weight distribution] 0.600 0.726 0.745 
Average weighted degree centrality* 12.892 13.460 14.248 
Average weighted shortest path length* 5.795 6.378 6.906 
Average weighted betweenness centrality* 70 71 80 
Average weighed nearest neighbour degree 30.448 36.260 42.981 
Number of communities 9 8 9 
Table 14: Weighted network and node level measures for barge transport. Extracted from Gephi and computed in R using 

the tnet package, and Python with NetworkX. *Service throughput times on parallel edges are averaged and recorded as one 
link. 

The weighted assortativity coefficient is relatively stable since the average weighted degree 
is proportionally increasing for all the nodes in the network due to an increasing average service 
throughput time. The strong negative linear relationship between a high degree node 
connecting to a low degree node is therefore sustained. For the rich-club coefficient new degree 
thresholds are set by multiplying the average service throughput time for barges by the 
thresholds from the unweighted rich-club measure. The increase of both the rich-club measures 
in 2017 is caused by the offering of new services between primarily high degree nodes; this is 
supported by the simultaneous increase in Gini-index. The subsequent decrease of rich-club 
coefficients in 2018 could be caused by a faster service throughput time between a particular 
set of nodes; this would result in a lower average weighted degree. So, some nodes from the 
[≥32] category end up in the [≥12] category, and some nodes get a weighted degree [<12]. This 
line of thought is supported by the weighted assortativity index and the Gini-index indicated 
the weights are not shifting between high and low degree nodes.  
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4.5 Correlation of Results 
 
4.5.1 The rail network 
The average service throughput time correlations for the rail network are in general less strong 
than for the complete network (table 15). However, the measures which do have a strong (≥0.9) 
or high (≥0.7) correlation are primarily the same. The assortativity coefficients show a high 
negative correlation (-0.821), which can mean increasing service throughput times do indeed 
connect higher degree nodes to lower degree nodes. This is supported by the high correlations 
in degree (0.843), closeness (0.888), clustering (0.868), and a strong correlation in the Gini-
index (0.981). All of them point towards a trend of centralisation and an increasing connectivity 
between high and low degree nodes.  
 

Similar to the complete network, the average travel time and average number of departures   
show strong correlations with the network measures; in this case even better ones than the 
average service throughput time. Both of them correlate high or strong with nine out the 14 
measures. This is the same number as for the average service throughput time, but the 
significances are better for the average number of weekly departures. The average distance 
shows similar strong correlations to the shortest path lengths compared to the correlations for 
the complete network. 
 
4.5.2 The barge network 
The last sub-network up for analysis is the barge network: by far the smallest network in terms 
of number of connections, number of nodes, and geographical spread. In combination with 
significant changes in average service throughput time and its underlying variables, it is 
therefore expected to show the best correlations of all three networks. Out of the 14 measures, 
ten show a high to strong correlation with the average service throughput time (table 16). 
Remarkable is the strong positive correlation (0.958) with the rich-club [>20], as this measure 
shows low correlations for the complete and rail network. A cause of this could be the relative 
stability of the set of nodes belonging to this degree threshold whereas this set seemed to 
fluctuate for the rail network as the number of intermediary nodes is increasing there. It could 
also explain the strong correlations with others measure based on the degree centrality; 0.934 
for the rich-club [≥5] and 0.999 for the Gini-index. The correlation with the degree centrality 
is 0.995, so higher degree values for more connected nodes could be the result of an increased 
average service throughput time. 
 

High and strong negative correlations are detected between the average number of 
departures per week and two of the centrality measures (-0.944 for degree, -0.872 for 
betweenness). As the frequency of departures steadily decreases, the network is becoming more 
central. This is supported by the strong positive correlation (0.998) between the average 
number of weekly departures and the clustering coefficient. The latter is decreasing, thus there 
are less closed triplets in the network, indicating most nodes only have services from or to one 
other (high degree) node and not to other (low degree) nodes. This is some way embedded in 
the barge network as the rivers are connecting specific cities and do not offer the possibility to 
easily create services to other cities out of their river system. Average distance shows low 
correlations compared to the other two networks. This raises the question whether it is only 
primarily useful for explaining changes in the rail network.



 
 

 

 
Table 15: Correlations between the average service throughput time and all network measures in the rail network for 2016-2018 (N=3). Correlation above 0.8 are in bold for more clarity. 

Computed in IBM SPSS. 

Rail network 

**. Correlation is significant at the 0.01 level (2-tailed). 

*.   Correlation is significant at the 0.05 level (2-tailed). 
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Table 16: Correlations between the average service throughput time and all network measures in the barge network for 2016-2018 (N=3). Correlations above 0.8 are in bold for more clarity. 

Computed in IBM SPSS.

Barge network 

**. Correlation is significant at the 0.01 level (2-tailed). 

*.   Correlation is significant at the 0.05 level (2-tailed). 
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Table 17: Average service throughput time correlations for all networks (N=3). Composed from tables 9, 15, and 16  

**. Correlation is significant at the 0.01 level (2-tailed). 

*.   Correlation is significant at the 0.05 level (2-tailed). 
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4.6 Regression analysis 
 
A linear regression analysis is done in IBM SPSS in order to determine whether the established 
correlations are contributable to changes in the independent variable: the service throughput 
time. Before doing the linear regression analysis, the curve estimation regression analysis 
function in IBM SPSS was used to get the best fit with the model. Curve estimations were 
made for a linear, power, logarithmic, and exponential model. Most variables have the best fit 
with the linear model. Some did not, but since the differences between the linear and the other 
models were so minimal, the choice was made to use identical model for all variables. 
 

All squared R values in table 18 which contain an asterisk (*) also show high or strong 
correlations in table 17. Six out of the 15 variables for the complete network have both a high 
or strong correlation and a relatively good fit (R2 ≥ 0.75, Sig. ≤ 0.31) with the linear regression 
model. For the rail network this is four out of 14, and for the barge network it is eight out of 
14. However, the significance levels are for most of these values are not near the 95 percent 
confidence level. Only the Gini-index for the barge network is significant above the 95 percent 
level. Another three measures reach the 90 percent confidence level and another five the 80 
percent level. 
 

 
Complete network Rail network Barge network 

Network measure R2 Sig. [2-t] R2 Sig. [2-t] R2 Sig. [2-t] 

Hierarchy 0.945* 0.150 0.434 0.542 0.122 0.773 

Assortativity coefficient 0.940* 0.158 0.673 0.387 0.000 0.999 

Average shortest path length 0.325 0.614 0.547 0.470 0.644 0.407 

Gamma index 0.781* 0.310 0.002 0.971 0.992* 0.057 

Rich-club [5]/[5]/[3] 0.880* 0.226 0.781* 0.310 0.873* 0.232 

Rich-club [20]/[20]/[8] 0.170 0.916 0.001 0.979 0.917* 0.186 

Gini-index [degree distribution] 0.949* 0.145 0.962* 0.125 0.999* 0.023 

Gini-index [edge distribution] 0.556 0.464 - - - - 

Average degree centrality 0.561 0.461 0.710 0.362 0.990* 0.064 

Average betweenness centrality 0.284 0.642 0.594 0.440 0.342 0.520 

Average closeness centrality 0.628 0.418 0.789* 0.304 0.869 0.236 

Average clustering coefficient 0.981* 0.087 0.753* 0.331 0.008 0.943 

Average nearest neighbour degree 0.495 0.503 0.027 0.895 0.833* 0.268 

Network diameter 0.001 0.976 0.002 0.971 0.823* 0.277 

Communities 0.717 0.357 0.474 0.516 0.823* 0.277 

Average distance 0.502 0.499 0.812* 0.285 0.358 0.591 

Average travel time 0.985* 0.079 0.983* 0.083 0.670 0.389 

Average departures per week 0.981* 0.087 0.999* 0.012 0.822* 0.277 
Table 18: : Linear regression analysis for all network. R2 values above 0.75 are in bold for clarity. Computed in IBM SPSS. 

* Also has a strong correlation.  
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5 Conclusion 
 
The goal of this master thesis is to explain if network structure changes of container transport 
in the hinterland of Europe can be attributed to changes in service throughput time, and whether 
the changes are different if the modality used is considered. For this purpose, complex network 
measures are computed on both weighted and unweighted networks, and correlations between 
the change in average service throughput time and the computed complex network measures 
are extracted. Finally, a regression analysis is performed to detect whether the changes are 
caused by the independent variable, service throughput time. 
 

Over the course of three years the complete hinterland network with both rail and barge 
connections shows a trend towards an increasing importance around high degree nodes. These 
high degree nodes act as hubs in a hub-and-spoke structured network for connecting 
communities consisting of smaller degree nodes. Analysis has showed the number of unique 
connections between hubs has decreased; this does however not mean the number of services 
has decreased between these hubs. Since the increase in the total number of services included 
in the database is larger than the increase in unique connections, new services are primarily 
added on already existing routes. The decrease in the number of unique connections between 
highly connected hubs, and the increasing connectivity between hinterland destinations and 
hubs, shows hubs are serving specific hinterlands: their communities. As these communities 
are geographically dispersed over Europe, certain corridors, linkable to the TEN-T, are 
detected. The increasing use of corridors to specific hinterland communities for container 
transport in Europe would explain why the hubs need less connectivity with one another and 
connect more with distant, lower in connectivity, cities in the hinterland. 
 

The use of service throughput time as link weight has showed faster shortest paths exist 
than the one crossing the least number of nodes; this was indicated by the weighted 
betweenness being higher than the unweighted betweenness. So, there are alternative 
connections between cities both connected to the same hub, but these connections are slower 
than a route crossing the hub. This signals the importance of the hubs in the network. The 
communities connected by the hubs have become more geographically dispersed, but the 
average shortest path length has not increased. Correlations between the network measures and 
the service throughput time are strong and cohere with the line of thought for why measures 
are moving in a certain direction. Six out of the 15 variables in the regression analysis also 
have a high squared R value. None of the correlations or squared R values are however 
significant on a 95 percent confidence level. So, while the relations between the service 
throughput time and the network measures are seemingly logical, it cannot be statistically 
established whether the service throughput time is a cause for the network structure changes. 
 

Rail transport in the European hinterland has a relativity stable average service throughput 
time, but changes in the network structure do however take place. These are not significantly 
reflected in the average service throughput times as the number of connections is large. There 
seems to be a development in the use of intermediary cities with a significant number of 
connections; yet not as much as the large hubs have. This can be cities which are positioned on 
the corridors and act as entry points for hinterland destinations receiving and sending 
containers through a corridor. If specific routes are examined, the changes in average service 
throughput time make the formation of corridors in the network more visible. The correlations 
confirm this for developments on a network level. However, squared R values and a lack of 
significance on a 95 percent confidence level are, just like the in the complete network, not 
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substantiating enough to prove service throughput time changes are causing the network 
structure changes for rail transport. 
 

For the barge network the corridor structure was already in place and is dominated by 
primarily Antwerp and Rotterdam. The extra services included in the database mainly go from 
these two hubs to cities along the Rhine river in Germany. These relative long routes for the 
new services explain the significant changes in average service throughput time. Changes in 
average service throughput time are thus, compared to the rail network, not showing the 
formation of corridors; these are already in place and do not have the ability to change much 
since the rivers and canals are effectively already natural corridors on their own. Correlations 
show service throughput time is correlating with network structure changes around Antwerp, 
Rotterdam, and some other small cities. The offering of extra services here, not necessarily fast 
or frequent, on already existing routes increases the centrality. Regression analysis is though 
only resulting in one squared R value with a confidence level over 95 percent: the rich-club 
index [≥8]. So, while developments in the barge network are seemingly logical (and 
correlating) with the average service throughput time, no statistical relationship can be 
established. 
 

It has proved to be useful to split the network for the modalities used in the European 
hinterland since the average service throughput time is showing different network structure 
developments for barge and rail. Eventually, service throughput time is however not able to 
statistically prove it is of influence in changing the network structure. The main reason for the 
lack of evidence is probably the limited timespan of the data, as the literature has showed a 
relationship between time and network structure changes is highly likely. 
 
5.1 Discussion 
 
The case of container transport by barge and rail in the European hinterland was until this thesis 
not researched with complex network measures on a longitudinal dataset. The complex 
network measures used are well established (see table 1 for the overview) and result in a high 
validity of observations and subsequent interpretations. The dataset gives a proper reflection 
of the real-world hinterland transportation network as the schedules are obtained from the 
operators and are continuously updated. Ecorys estimates over 90 percent of all scheduled 
services for container transport by barge and rail are included for Western Europe. These two 
modalities are the most important scheduled ways of container transport in Europe; transport 
by truck has a higher market share (Eurostat, 2015) but is more ad-hoc. The percentage of 
transport done through scheduled versus unscheduled services is not known. However, 
estimations based on the capacity of trains and barges, service frequency, and the recorded 
throughput of containers in a certain port, show almost all transport (if the services would 
actually take place on a fully loaded train or barge) is done through scheduled services (De 
Langen et al., 2017). 
 

Developments observed in the network over the course of three years seem to for a large 
extent represent the trends of containerised transport in Europe (Notteboom, 1997 & 2010). 
For rail transport there is no further concentration of ports but rather a decentralisation of 
distribution activities to hubs located on corridors. This results in a network structure of hubs 
serving discontinuous hinterlands (Notteboom & Rodrigue, 2005). Whether this was under the 
influence of competition between large consortia was not in scope of this research. Policies 
from (port) authorities and governments were in scope neither, but the growing visibility of the 
TEN-T corridors suggest EU policy is being executed. The increasing number of containers in 
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hinterland hubs enable operators in the hub to exploit economies of scale in handling the 
containers and loading full train and barge loads (Notteboom, 2010). The economies of scale 
therefore increase the competitive position of a hub (Rodrigue et al., 2010) and can 
subsequently cause network structure changes in their direct neighbourhood (De Langen & 
Sharypova, 2013). This is in some extent also visible in this research, yet not specifically 
measured, as there are communities attached to hubs located on the corridors (figure 10). 
 

In the network for barge transportation the trend in containerised transport is slightly the 
same, although the corridors were already in place. The development of the strong links from 
hubs such as Antwerp and Rotterdam could be the result of policies stimulating ‘greener’ types 
of transport than trucking. Especially in the congested and polluted areas from Rotterdam and 
Antwerp to the Ruhr area in Germany (and vice versa). Growth in unique connections in the 
barge network could theoretically happen between nodes currently displaying low degree 
values. It is however probably not economically viable to establish these links as there currently 
is a lack of volume to be transported. The use of synchromodal planning tools could create 
opportunities to reach a cost-effective number of containers to be transported, which would in 
turn create the possibility to establish new services. 
 

Current literature has addressed the barge and rail network in Europe separately and has in 
some cases also looked at its development over time. There is however an absence of literature 
on applying complex network measured to the European hinterland. This thesis is contributing 
to the existing literature by using throughput time as a link weight in calculating complex 
network measures for the European network for container transport by barge and rail. This is a 
novel way of applying a link weight in combination with complex network measures to the 
European network. Throughput time is correlating with a set of complex network measures, it 
can however not be established whether the developments are actually caused by changes in 
throughput time. Nevertheless, it signals throughput time could be of importance and it 
indicates further research on this is required. 
 

The influence of time of the network structure is of practical relevance for ports designing 
new (trans)port policies or initiating large infrastructure projects. When the enormous 
investments are made in for example railways, the economic effects have to be well-defined in 
order to justify the investment. Besides the guarantee the investment or policy will have its 
desired effects, spill-over effects of an investment or a policy in the context of the larger 
transportation network could also help or hamper making this justification. Ports may also want 
to be attractive for service providers shipping large volumes on corridors or seeking access to 
certain hinterlands. The relevance of service throughput time in this process is the port 
authority can estimate what the frequency and transport time of services should be in order to 
establish a certain position in the network. A service provider could also benefit from the 
information how a transport network changes if a faster or more frequent service is offered. It 
could for instance mean a switch of modality, an increase of demand, or an opportunity to enter 
new regions. For rail operators the practical relevance is more specific on what throughput time 
is needed to establish a corridor, and for barge operators it is mainly how they can be more 
attractive than using a truck on a short distance range to cities with a limited number of 
connections. For the latter, the service throughput time can be included in the trade-off between 
offering a fast service and being cost-effective in transporting a small number of containers to 
a city with a limited number of connections.  
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As indicated by Van Langen et al. (2017), who used the same 2016 dataset, an important 
next step in research is to observe how the network changes over time. With two years more 
of stable data this research has made a start to this, yet a lack of longitudinal data has limited 
this research in increasing the correlations and significances between the average service 
throughput time and the network measures. A second limitation of this study was the limited 
amount of literature exploring complex network structures in hinterlands over time. However, 
methods used on static, social, and neural networks, and transportation network addressing 
global structures have proved to be useful. Research could however be improved if more 
specific measures were developed taking characteristics of rail and barge transport into 
account. A third and final limitation was the geographical scope of this research: only the 
hinterland network in Europe was considered. 
 

Future research is therefore desired in testing whether the influence of service throughput 
time is also of influence in other hinterland transportation networks than the European one. 
Europe has for instance a large population in a compact geographical area, while the US has 
larger distances between its economical centres. Service throughput times could be of less 
influence there as the travel times are long anyways. It could influence differently on barge 
operators in an environment where ‘greener’ modes of transport are less supported or where 
the natural connectivity between river systems is greater or more limited. Confirming the 
influence of service throughput time in different environments would strengthen its validity as 
a link weight. The confirmation is of importance because it is relevant to many actors what a 
change in the network will result in. Extensions to this research based on the same dataset could 
be in the direction of testing its resilience if nodes are removed, adding dwell-times in hubs to 
the weighted shortest path lengths in order to increase the real-world representativeness, 
assigning properties to transport mode (shuttle service, hub-hub services, pre- and end-
haulage), and exploring the competition between operators and its consequences on the 
offering of services and the network structure.  
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7 Appendices 
 
Appendix 1: Changes of degree in percentages for the 30 nodes with the highest degree in 2016. Only nodes already existing 
in 2016 are considered. Degree values extracted from Gephi. 

Node 
Degree Delta [%] 

2016 2017 2018 ’16-’17 ’17-’18 ’16-’18 

Netherlands - Rotterdam 205 207 210 1% 1% 2% 
Belgium - Antwerp 179 179 181 0% 1% 1% 
Germany - Hamburg 128 130 114 2% -12% -11% 
Germany - Duisburg 92 90 90 -2% 0% -2% 
Germany - Bremerhaven 80 80 79 0% -1% -1% 
Italy - Milan 67 72 82 7% 14% 22% 
Germany - Ludwigshafen 57 56 53 -2% -5% -7% 
France - Lyon 45 45 30 0% -33% -33% 
Germany - Cologne 44 48 42 9% -13% -5% 
France - Marseille 42 46 34 10% -26% -19% 
Italy - Trieste 40 46 56 15% 22% 40% 
Italy - Verona 38 40 40 5% 0% 5% 
Germany - Wilhelmshaven 38 38 52 0% 37% 37% 
France - Paris 36 42 32 17% -24% -11% 
Germany - Munich 35 33 29 -6% -12% -17% 
Austria - Vienna 30 24 28 -20% 17% -7% 
Spain - Barcelona 30 20 18 -33% -10% -40% 
France - Fos sur Mer 28 29 28 4% -3% 0% 
Luxembourg - Bettembourg 28 15 12 -46% -20% -57% 
France - Dourges 27 36 28 33% -22% 4% 
Hungary - Budapest 27 19 19 -30% 0% -30% 
United Kingdom - Felixstowe 26 28 31 8% 11% 19% 
Poland - Kutno 26 26 18 0% -31% -31% 
Norway - Oslo 26 24 30 -8% 25% 15% 
France - Le Havre 24 30 32 25% 7% 33% 
Italy - Novara 24 29 28 21% -3% 17% 
Slovenia - Koper 24 26 28 8% 8% 17% 
France - Strasbourg 24 24 22 0% -8% -8% 
Germany - Weil am Rhein 22 18 18 -18% 0% -18% 
  Average delta -0.02% -2.87% -2.91% 
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Appendix 2: The complete 2016 network with node weights and colouring. The thickness of the edges represents the number 
of services. The size of a node is based on the node degree. Visualised with Gephi. 

 
 
Appendix 3: The complete 2017 network with node weights and colouring. The thickness of the edges represents the number 
of services. The size of a node is based on the node degree. Visualised with Gephi. 
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Appendix 4: The complete 2018 network node link weights and colouring. The thickness of the edges represents the number 
of services. The size of a node is based on the node degree. Visualised with Gephi. 
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Appendix 5: Average centrality and clustering measures for communities in 2016. Extracted from Gephi and Tulip and 
computed in Microsoft Excel. 

Community 2016 Nodes 
[#] 

Average 
Degree Diameter Average 

Clustering 
Average shortest 

path length 
Trans Alp 3 1.333 2 0 1.333 
Portugal 4 1.500 2 0 1.500 
Czech/Slovakia 11 2 3 0.188 2.164 
Spain 13 5 4 0.459 1.688 
Norway/Sweden 18 2.778 4 0.312 2.268 
Germany/Sweden 21 3.333 3 0.440 2.148 
Poland 21 2.429 4 0.064 2.436 
Austria/Italy/Slovakia 21 3.571 4 0.402 2.217 
UK 23 3.913 4 0.276 2.368 
France 26 5.115 4 0.535 2.026 
Germany 48 4.125 4 0.264 2.176 
Romania/Italy/Germany 52 2.635 7 0.137 3.162 
Netherlands 65 3.400 3 0.624 1.995 

 
 
 
Appendix 6: Average centrality and clustering measures for communities in 2017. Extracted from Gephi and Tulip and 
computed in Microsoft Excel. 

Community 
2017 

Nodes 
[#] 

Average 
Degree Diameter Average 

Clustering 
Average shortest  

path length 
Lugo (ITA)/Arcis-Sur-Aube (FRA) 2 1 1 0 1 
Trans Alp 3 1.333 2 0 1.333 
Ireland 3 1.333 2 0 1.333 
Bulgaria/Romania 10 2 3 0.207 2.111 
Spain 12 5.833 3 0.569 1.515 
Norway 13 2.769 3 0.344 1.872 
Poland 13 2.462 3 0.000 2.128 
Germany/Sweden 23 2.609 5 0.140 2.593 
UK 27 3.222 5 0.124 2.467 
BEL/DEU/ITA/ESP/CHE 36 2.972 7 0.183 2.904 
France/Germany/Italy 42 4.571 4 0.438 2.429 
AUT/CZE/DEU/ITA/SVK/POL 71 4.549 6 0.246 2.517 
AUT/BEL/FRA/DEU/NLD/CHE 79 3.658 3 0.659 2.004 

 
 
 
Appendix 7: Average centrality and clustering measures for communities in 2018. Extracted from Gephi and Tulip and 
computed in Microsoft Excel. 

Community 
2018 

Nodes 
[#] 

Average 
Degree Diameter Average 

Clustering 
Average shortest 

path length 
Ireland 2 1 1 0 1 
Trans Alp 3 1.333 2 0 1.333 
Romania 6 1.667 2 0 1.667 
Germany/Switzerland 10 2 6 0 2.622 
Poland 13 2.462 4 0 2.231 
Norway/Sweden 14 2.429 3 0.319 1.934 
Germany/Spain 19 4.421 5 0.366 2.538 
Bulgaria/Germany/Italy 21 2.619 5 0.301 2.695 
UK 28 2.964 5 0.114 2.403 
France 31 4.226 6 0.281 2.464 
AUT/DEU/ITA/SWE/CHE 49 4.449 5 0.256 2.529 
AUT/CZE/DEU/SVK 58 4.328 5 0.303 2.424 
BEL/FRA/DEU/NLD/CHE 76 3.645 5 0.546 2.044 
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Appendix 8: The complete 2016 network with service throughput time as link weight. The colour and thickness of the edges 
represents the average service throughput time. The size of a node is based on the node degree. Visualised with Gephi. 

 
 

Appendix 9: The complete 2017 network with service throughput time as link weight. The colour and thickness of the edges 
represents the average service throughput time. The size of a node is based on the node degree. Visualised with Gephi. 
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Appendix 10: The complete 2018 network except for the rail link with China (it distorted the colouring because of the long 
travel time) with service throughput time as link weight. The colour and thickness of the edges represents the average service 
throughput time. The size of a node is based on the node degree. Visualised with Gephi. 

 
 
 
 
 
Appendix 11: Average centrality and clustering measures for communities with link weights in 2017. Extracted from Gephi 
and Tulip and computed in Microsoft Excel. 

Community 2016 Nodes 
[#] 

Average 
Degree Diameter Average 

Clustering 
Average shortest 

path length 

Trans Alp 3 1.333 2 0.000 1.333 
Portugal 4 1.500 2 0.000 1.500 
Romania/Bulgaria/Hungary 13 2.308 4 0.179 2.244 
Germany/Italy/Spain 18 2.556 5 0.052 2.536 
UK 23 3.913 4 0.276 2.368 
Norway/Sweden 30 2.933 5 0.226 2.777 
Germany/Poland 32 3.344 5 0.292 2.440 
Italy/Netherlands/Switzerland 34 2.471 6 0.207 2.839 
France/Spain 38 5.211 6 0.459 2.729 
Austria/Czech/Germany 44 3.500 4 0.207 2.248 
AUT/FRA/DEU/NLD/CHE/CZE 87 3.678 4 0.543 2.161 
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Appendix 12: Average centrality and clustering measures for communities with link weights in 2017. Extracted from Gephi 
and Tulip and computed in Microsoft Excel. 

Community 2017 Nodes 
[#] 

Average 
Degree Diameter Average 

Clustering 
Average shortest 

path length 

Luga (ITA)/Arcis-sur-Aube (FRA) 2 1 1 0 1 
Ireland 3 1.333 2 0 1.333 
Trans Alp 3 1.333 2 0 1.333 
Spain 13 5.538 4 0.508 1.667 
BEL/BGR/DEU/ITA/ROU 16 2.062 5 0.226 2.567 
Germany/Poland/Spain 18 2.222 5 0.152 2.863 
AUT/DEU/ITA/POL/SVK/SWE 26 2.962 5 0.094 2.594 
UK 26 3.269 5 0.130 2.456 
Norway/Sweden 28 2.714 6 0.276 3.101 
BEL/DNK/DEU/ITA/CHE/NLD 30 3.233 5 0.107 2.680 
France/Germany 33 4.697 4 0.510 2.212 
AUT/CZE/DEU/ITA/SVK 56 3.839 7 0.259 2.932 
BEL/FRA/DEU/NLD/CHE 80 3.612 4 0.626 2.051 

 
 
 
 
Appendix 13: Average centrality and clustering measures for communities with link weights in 2018. Extracted from Gephi 
and Tulip and computed in Microsoft Excel. 

Community 2018 Nodes 
[#] 

Average 
Degree Diameter Average 

Clustering 
Average shortest 

path length 

Netherlands/China 2 1 1 0 1 

Ireland 2 1 1 0 1 

Trans Alp 3 1.333 2 0 1.333 

Romania 6 1.667 2 0 1.667 

Poland 13 2.462 4 0 2.231 

Bulgaria/Germany/Italy 15 2.267 6 0.137 2.733 

Germany/Spain 16 4.812 4 0.412 1.933 

BEL/FRA/DEU/ITA/NLD 18 2.611 5 0.256 2.706 

AUT/CZE/DEU/POL/SVK/CHE 25 2.760 5 0.293 2.514 

France 30 4.100 6 0.263 2.484 

Norway 14 2.429 3 0.319 1.934 

DNK/DEU/ITA/SWE 40 4.050 5 0.146 2.533 

Austria/Germany 41 4.805 4 0.420 1.991 

UK 26 3.077 4 0.132 2.362 

BEL/FRA/DEU/NLD/CHE 79 3.367 4 0.515 2.155 
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Appendix 14 (.1, .2, .3, .4, .5, .6): The rail and barge networks for 2016-2018 with node weights and colouring. The thickness 
of the edges represents the number of services. The size of a node is based on the node degree. Visualised with Gephi. 
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Appendix 15 (.1, .2, .3, .4, .5, .6): The 2016-2018 rail and barge networks (except the link with China in 13.4 because it 
distorted the colour scale with its long travel time) with service throughput time as link weight. The colour and thickness of 
edges represents the average service throughput time. The node-size is based on the degree. Visualised with Gephi. 
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